The SHOGUN Machine Learning Toolbox

被引:0
|
作者
Sonnenburg, Soeren [1 ,2 ]
Raetsch, Gunnar [2 ]
Henschel, Sebastian [2 ]
Widmer, Christian [2 ]
Behr, Jonas [2 ]
Zien, Alexander [2 ]
de Bona, Fabio [2 ]
Binder, Alexander [1 ]
Gehl, Christian [1 ,3 ]
Franc, Vojtech [4 ]
机构
[1] Berlin Inst Technol, D-10587 Berlin, Germany
[2] Max Planck Soc, Friedrich Miescher Lab, D-72076 Tubingen, Germany
[3] Trifense GmbH, D-16727 Velten, Germany
[4] Czech Tech Univ, Ctr Machine Percept, Prague 16627 6, Czech Republic
关键词
support vector machines; kernels; large-scale learning; !text type='Python']Python[!/text; Octave; R;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We have developed a machine learning toolbox, called SHOGUN, which is designed for unified large-scale learning for a broad range of feature types and learning settings. It offers a considerable number of machine learning models such as support vector machines, hiddenMarkov models, multiple kernel learning, linear discriminant analysis, and more. Most of the specific algorithms are able to deal with several different data classes. We have used this toolbox in several applications from computational biology, some of them coming with no less than 50 million training examples and others with 7 billion test examples. With more than a thousand installations worldwide, SHOGUN is already widely adopted in the machine learning community and beyond. SHOGUN is implemented in C++ and interfaces to MATLAB (TM), R, Octave, Python, and has a stand-alone command line interface. The source code is freely available under the GNU General Public License, Version 3 at http://www.shogun-toolbox.org.
引用
收藏
页码:1799 / 1802
页数:4
相关论文
共 50 条
  • [1] ManufacturingNet: A machine learning toolbox for engineers
    Antony, Akshay
    Guntuboina, Chakradhar
    Magar, Rishikesh
    Ghule, Lalit
    Doshi, Ruchit
    Khalid, Aman
    Seshadri, Sharan
    Farimani, Amir Barati
    [J]. SOFTWAREX, 2023, 23
  • [2] Gaussian Processes for Machine Learning (GPML) Toolbox
    Rasmussen, Carl Edward
    Nickisch, Hannes
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2010, 11 : 3011 - 3015
  • [3] SeisBench-A Toolbox for Machine Learning in Seismology
    Woollam, Jack
    Muenchmeyer, Jannes
    Tilmann, Frederik
    Rietbrock, Andreas
    Lange, Dietrich
    Bornstein, Thomas
    Diehl, Tobias
    Giunchi, Carlo
    Haslinger, Florian
    Jozinovi, Dario
    Michelini, Alberto
    Saul, Joachim
    Soto, Hugo
    [J]. SEISMOLOGICAL RESEARCH LETTERS, 2022, 93 (03) : 1695 - 1709
  • [4] A toolbox of machine learning software to support microbiome analysis
    Marcos-Zambrano, Laura Judith
    Lopez-Molina, Victor Manuel
    Bakir-Gungor, Burcu
    Frohme, Marcus
    Karaduzovic-Hadziabdic, Kanita
    Klammsteiner, Thomas
    Ibrahimi, Eliana
    Lahti, Leo
    Loncar-Turukalo, Tatjana
    Dhamo, Xhilda
    Simeon, Andrea
    Nechyporenko, Alina
    Pio, Gianvito
    Przymus, Piotr
    Sampri, Alexia
    Trajkovik, Vladimir
    Lacruz-Pleguezuelos, Blanca
    Aasmets, Oliver
    Araujo, Ricardo
    Anagnostopoulos, Ioannis
    Aydemir, Onder
    Berland, Magali
    Calle, M. Luz
    Ceci, Michelangelo
    Duman, Hatice
    Gundogdu, Aycan
    Havulinna, Aki S.
    Kaka Bra, Kardokh Hama Najib
    Kalluci, Eglantina
    Karav, Sercan
    Lode, Daniel
    Lopes, Marta B.
    May, Patrick
    Nap, Bram
    Nedyalkova, Miroslava
    Paciencia, Ines
    Pasic, Lejla
    Pujolassos, Meritxell
    Shigdel, Rajesh
    Susin, Antonio
    Thiele, Ines
    Truica, Ciprian-Octavian
    Wilmes, Paul
    Yilmaz, Ercument
    Yousef, Malik
    Claesson, Marcus Joakim
    Truu, Jaak
    Carrillo de Santa Pau, Enrique
    [J]. FRONTIERS IN MICROBIOLOGY, 2023, 14
  • [5] Review of Machine Learning Classifier Toolbox of Neuroimaging Data
    Lad, Rashmi
    Metkewar, P. S.
    [J]. 2020 IEEE PUNE SECTION INTERNATIONAL CONFERENCE (PUNECON), 2020, : 175 - 179
  • [6] Machine learning toolbox for quantum many body physics
    Filippo Vicentini
    [J]. Nature Reviews Physics, 2021, 3 : 156 - 156
  • [7] Uncertainty-aware automated machine learning toolbox
    Dorst, Tanja
    Schneider, Tizian
    Eichstaedt, Sascha
    Schuetze, Andreas
    [J]. TM-TECHNISCHES MESSEN, 2023, 90 (03) : 141 - 153
  • [8] Machine learning toolbox for quantum many body physics
    Vicentini, Filippo
    [J]. NATURE REVIEWS PHYSICS, 2021, 3 (03) : 156 - 156
  • [9] ACES: a machine learning toolbox for clustering analysis and visualization
    Jiangning Gao
    Görel Sundström
    Behrooz Torabi Moghadam
    Neda Zamani
    Manfred G. Grabherr
    [J]. BMC Genomics, 19
  • [10] CobWeb 1.0: machine learning toolbox for tomographic imaging
    Chauhan, Swarup
    Sell, Kathleen
    Ruehaak, Wolfram
    Wille, Thorsten
    Sass, Ingo
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2020, 13 (01) : 315 - 334