A toolbox of machine learning software to support microbiome analysis

被引:2
|
作者
Marcos-Zambrano, Laura Judith [1 ]
Lopez-Molina, Victor Manuel [1 ]
Bakir-Gungor, Burcu [2 ]
Frohme, Marcus [3 ]
Karaduzovic-Hadziabdic, Kanita [4 ]
Klammsteiner, Thomas [5 ,6 ]
Ibrahimi, Eliana [7 ]
Lahti, Leo [8 ]
Loncar-Turukalo, Tatjana [9 ]
Dhamo, Xhilda [10 ]
Simeon, Andrea [11 ]
Nechyporenko, Alina [3 ,12 ]
Pio, Gianvito [13 ,14 ]
Przymus, Piotr [15 ]
Sampri, Alexia [16 ]
Trajkovik, Vladimir [17 ]
Lacruz-Pleguezuelos, Blanca [1 ]
Aasmets, Oliver [18 ,19 ]
Araujo, Ricardo [20 ,21 ]
Anagnostopoulos, Ioannis [22 ,23 ]
Aydemir, Onder [24 ]
Berland, Magali [25 ]
Calle, M. Luz [26 ,27 ]
Ceci, Michelangelo [13 ,14 ]
Duman, Hatice [28 ]
Gundogdu, Aycan [29 ,30 ]
Havulinna, Aki S. [31 ,32 ]
Kaka Bra, Kardokh Hama Najib [33 ]
Kalluci, Eglantina [10 ]
Karav, Sercan [34 ]
Lode, Daniel [3 ]
Lopes, Marta B. [35 ,36 ]
May, Patrick [37 ]
Nap, Bram [38 ]
Nedyalkova, Miroslava [39 ]
Paciencia, Ines [40 ,41 ]
Pasic, Lejla [42 ]
Pujolassos, Meritxell [26 ]
Shigdel, Rajesh [43 ]
Susin, Antonio [44 ]
Thiele, Ines [38 ,45 ]
Truica, Ciprian-Octavian [46 ]
Wilmes, Paul [47 ,48 ]
Yilmaz, Ercument [49 ]
Yousef, Malik [50 ,51 ]
Claesson, Marcus Joakim [45 ,52 ]
Truu, Jaak [33 ]
Carrillo de Santa Pau, Enrique [1 ]
机构
[1] IMDEA Food Inst, Precis Nutr & Canc Res Program, Computat Biol Grp, Madrid, Spain
[2] Abdullah Gul Univ, Dept Comp Engn, Kayseri, Turkiye
[3] Tech Univ Appl Sci Wildau, Div Mol Biotechnol & Funct Genom, Wildau, Germany
[4] Int Univ Sarajevo, Fac Engn & Nat Sci, Sarajevo, Bosnia & Herceg
[5] Univ Innsbruck, Dept Microbiol, Innsbruck, Austria
[6] Univ Innsbruck, Dept Ecol, Innsbruck, Austria
[7] Univ Tirana, Dept Biol, Tirana, Albania
[8] Univ Turku, Dept Comp, Turku, Finland
[9] Univ Novi Sad, Fac Tech Sci, Novi Sad, Serbia
[10] Univ Tirana, Fac Nat Sci, Dept Appl Math, Tirana, Albania
[11] Univ Novi Sad, BioSense Inst, Novi Sad, Serbia
[12] Kharkiv Natl Univ Radioelect, Dept Syst Engn, Kharkiv, Ukraine
[13] Univ Bari Aldo Moro, Dept Comp Sci, Bari, Italy
[14] Natl Interuniv Consortium Informat, Big Data Lab, Rome, Italy
[15] Nicolaus Copernicus Univ, Fac Math & Comp Sci, Torun, Poland
[16] Univ Cambridge, Victor Phillip Dahdaleh Heart & Lung Res Inst, Cambridge, England
[17] Ss Cyril & Methodius Univ, Fac Comp Sci & Engn, Skopje, North Macedonia
[18] Univ Tartu, Inst Genom, Estonian Genome Ctr, Tartu, Estonia
[19] Univ Tartu, Inst Mol & Cell Biol, Dept Biotechnol, Tartu, Estonia
[20] Univ Porto, Inst Invest & Inovacao Saude I3S, Nephrol & Infect Dis R&D Grp, Porto, Portugal
[21] Univ Porto, INEB Inst Engn Biomed, Porto, Portugal
[22] Univ Piraeus, Dept Informat, Piraeus, Greece
[23] Univ Thessaly, Comp Sci & Biomed Informat Dept, Lamia, Greece
[24] Karadeniz Tech Univ, Dept Elect & Elect Engn, Trabzon, Turkiye
[25] Univ Paris Saclay, INRAE, MetaGenoPolis, Jouy En Josas, France
[26] Cent Univ Catalonia, Univ Vic, Fac Sci Technol & Engn, Vic, Barcelona, Spain
[27] Fundacio Inst Recerca & Innovacio Ciencies Vida &, IRIS CC, Vic, Barcelona, Spain
[28] Canakkale Onsekiz Mart Univ, Dept Mol Biol & Genet, Canakkale, Turkiye
[29] Erciyes Univ, Fac Med, Dept Microbiol & Clin Microbiol, Kayseri, Turkiye
[30] Erciyes Univ, Genome & Stem Cell Ctr GenKok, Metagen Lab, Kayseri, Turkiye
[31] Finnish Inst Hlth & Welf THL, Helsinki, Finland
[32] FIMM HiLIFE, Inst Mol Med Finland, Helsinki, Finland
[33] Univ Tartu, Inst Mol & Cell Biol, Tartu, Estonia
[34] Canakkale Onsekiz Mart Univ, Dept Mol Biol & Genet, Canakkale, Turkiye
[35] NOVA Sch Sci & Technol, Ctr Math & Applicat NOVA Math, Dept Math, Caparica, Portugal
[36] NOVA Sch Sci & Technol, Dept Mech & Ind Engn, UNIDEMI, Caparica, Portugal
[37] Univ Luxembourg, Luxembourg Ctr Syst Biomed, Bioinformat Core, Esch Sur Alzette, Luxembourg
[38] Univ Galway, Sch Med, Galway, Ireland
[39] Univ Sofia, Fac Chem & Pharm, Dept Inorgan Chem, Sofia, Bulgaria
[40] Univ Oulu, Res Unit Populat Hlth, Ctr Environm & Resp Hlth Res CERH, Oulu, Finland
[41] Univ Oulu, Bioctr Oulu, Oulu, Finland
[42] Univ Sarajevo, Sch Sci & Technol, Sarajevo Med Sch, Sarajevo, Bosnia & Herceg
[43] Univ Bergen, Dept Clin Sci, Bergen, Norway
[44] UPC Barcelona Tech, Math Dept, Barcelona, Spain
[45] Univ Coll Cork, APC Microbiome Ireland, Cork, Ireland
[46] Natl Univ Sci & Technol Politehn, Fac Automat Control & Comp, Comp Sci & Engn Dept, Bucharest, Romania
[47] Luxembourg Ctr Syst Biomed, Syst Ecol Grp, Esch Sur Alzette, Luxembourg
[48] Univ Luxembourg, Fac Sci Technol & Med, Dept Life Sci & Med, Belvaux, Luxembourg
[49] Karadeniz Tech Univ, Dept Comp Technol, Trabzon, Turkiye
[50] Zefat Acad Coll, Dept Informat Syst, Safed, Israel
关键词
microbiome; machine learning; software; feature generation; feature analysis; data integration; microbial gene prediction; microbial metabolic modeling; 16S RIBOSOMAL-RNA; HUMAN GUT MICROBIOME; METAGENOMIC DATA; PHYLOGENETIC CLASSIFICATION; TAXONOMIC CLASSIFICATION; GENE PREDICTION; WEB SERVER; SEQUENCES; SELECTION; PATTERNS;
D O I
10.3389/fmicb.2023.1250806
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The human microbiome has become an area of intense research due to its potential impact on human health. However, the analysis and interpretation of this data have proven to be challenging due to its complexity and high dimensionality. Machine learning (ML) algorithms can process vast amounts of data to uncover informative patterns and relationships within the data, even with limited prior knowledge. Therefore, there has been a rapid growth in the development of software specifically designed for the analysis and interpretation of microbiome data using ML techniques. These software incorporate a wide range of ML algorithms for clustering, classification, regression, or feature selection, to identify microbial patterns and relationships within the data and generate predictive models. This rapid development with a constant need for new developments and integration of new features require efforts into compile, catalog and classify these tools to create infrastructures and services with easy, transparent, and trustable standards. Here we review the state-of-the-art for ML tools applied in human microbiome studies, performed as part of the COST Action ML4Microbiome activities. This scoping review focuses on ML based software and framework resources currently available for the analysis of microbiome data in humans. The aim is to support microbiologists and biomedical scientists to go deeper into specialized resources that integrate ML techniques and facilitate future benchmarking to create standards for the analysis of microbiome data. The software resources are organized based on the type of analysis they were developed for and the ML techniques they implement. A description of each software with examples of usage is provided including comments about pitfalls and lacks in the usage of software based on ML methods in relation to microbiome data that need to be considered by developers and users. This review represents an extensive compilation to date, offering valuable insights and guidance for researchers interested in leveraging ML approaches for microbiome analysis.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Microbiome meta-analysis and cross-disease comparison enabled by the SIAMCAT machine learning toolbox
    Wirbel, Jakob
    Zych, Konrad
    Essex, Morgan
    Karcher, Nicolai
    Kartal, Ece
    Salazar, Guillem
    Bork, Peer
    Sunagawa, Shinichi
    Zeller, Georg
    [J]. GENOME BIOLOGY, 2021, 22 (01)
  • [2] Microbiome meta-analysis and cross-disease comparison enabled by the SIAMCAT machine learning toolbox
    Jakob Wirbel
    Konrad Zych
    Morgan Essex
    Nicolai Karcher
    Ece Kartal
    Guillem Salazar
    Peer Bork
    Shinichi Sunagawa
    Georg Zeller
    [J]. Genome Biology, 22
  • [3] ACES: a machine learning toolbox for clustering analysis and visualization
    Gao, Jiangning
    Sundstrom, Gorel
    Moghadam, Behrooz Torabi
    Zamani, Neda
    Grabherr, Manfred G.
    [J]. BMC GENOMICS, 2018, 19
  • [4] ACES: a machine learning toolbox for clustering analysis and visualization
    Jiangning Gao
    Görel Sundström
    Behrooz Torabi Moghadam
    Neda Zamani
    Manfred G. Grabherr
    [J]. BMC Genomics, 19
  • [5] The SHOGUN Machine Learning Toolbox
    Sonnenburg, Soeren
    Raetsch, Gunnar
    Henschel, Sebastian
    Widmer, Christian
    Behr, Jonas
    Zien, Alexander
    de Bona, Fabio
    Binder, Alexander
    Gehl, Christian
    Franc, Vojtech
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2010, 11 : 1799 - 1802
  • [6] Challenges in using Machine Learning to Support Software Engineering
    Borges, Olimar Teixeira
    Couto, Julia Colleoni
    Ruiz, Duncan
    Prikladnicki, Rafael
    [J]. ICEIS: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS - VOL 2, 2021, : 224 - 231
  • [7] Tool Support for Improving Software Quality in Machine Learning Programs
    Cheng, Kwok Sun
    Huang, Pei-Chi
    Ahn, Tae-Hyuk
    Song, Myoungkyu
    [J]. INFORMATION, 2023, 14 (01)
  • [8] ManufacturingNet: A machine learning toolbox for engineers
    Antony, Akshay
    Guntuboina, Chakradhar
    Magar, Rishikesh
    Ghule, Lalit
    Doshi, Ruchit
    Khalid, Aman
    Seshadri, Sharan
    Farimani, Amir Barati
    [J]. SOFTWAREX, 2023, 23
  • [9] GalaxAI: Machine learning toolbox for interpretable analysis of spacecraft telemetry data
    Kostovska, Ana
    Petkovic, Matej
    Stepisnik, Tomaz
    Lucas, Luke
    Finn, Timothy
    Martinez-Heras, Jose
    Panov, Pance
    Dzeroski, Saso
    Donati, Alessandro
    Simidjievski, Nikola
    Kocev, Dragi
    [J]. 8TH IEEE INTERNATIONAL CONFERENCE ON SPACE MISSION CHALLENGES FOR INFORMATION TECHNOLOGY (SMC-IT 2021), 2021, : 44 - 52
  • [10] Editorial: Microbiome and Machine Learning
    Moreno-Indias, Isabel
    Zomer, Aldert L.
    Gomez-Cabrero, David
    Claesson, Marcus J.
    [J]. FRONTIERS IN MICROBIOLOGY, 2022, 13