A modular approach to multi-agent reinforcement learning

被引:0
|
作者
Ono, N [1 ]
Fukumoto, K [1 ]
机构
[1] Univ Tokushima, Fac Engn, Dept Informat Sci & Intelligent Syst, Tokushima 770, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Several attempts have been reported to let multiple monolithic reinforcement-learning agents synthesize coordinated decision policies needed to accomplish their common goal effectively. Most of these straightforward reinforcement-learning approaches, however, scale poorly to more complex multi-agent learning problems, because the state space for each learning agent grows exponentially in the number of its partner agents engaged in the joint task. To remedy the exponentially large state space in multi-agent reinforcement learning, we previously proposed a modular approach and demonstrated its effectiveness through the application to a modified version of the pursuit problem. In this paper, the effectiveness of the proposed idea is further demonstrated using several variants of the pursuit problem. Just as in the previous case, our modular Q-learning hunters can successfully capture a randomly-evading prey agent, by synthesizing and taking advantage of effective coordinated behavior.
引用
收藏
页码:25 / 39
页数:15
相关论文
共 50 条
  • [41] Multi-Agent Reinforcement Learning for Traffic Signal Control: A Cooperative Approach
    Kolat, Mate
    Kovari, Balint
    Becsi, Tamas
    Aradi, Szilard
    [J]. SUSTAINABILITY, 2023, 15 (04)
  • [42] Load Frequency Control: A Deep Multi-Agent Reinforcement Learning Approach
    Rozada, Sergio
    Apostolopoulou, Dimitra
    Alonso, Eduardo
    [J]. 2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [43] A population-based approach for multi-agent interpretable reinforcement learning
    Crespi, Marco
    Ferigo, Andrea
    Custode, Leonardo Lucio
    Iacca, Giovanni
    [J]. APPLIED SOFT COMPUTING, 2023, 147
  • [44] An Incremental Approach for Multi-Agent Deep Reinforcement Learning for Multicriteria Missions
    Cysne, Nicholas Scharan
    Ribeiro, Carlos Henrique Costa
    Ghedini, Cinara Guellner
    [J]. 2023 EUROPEAN CONTROL CONFERENCE, ECC, 2023,
  • [45] Multi-Agent Reinforcement Learning Approach for Residential Microgrid Energy Scheduling
    Fang, Xiaohan
    Wang, Jinkuan
    Song, Guanru
    Han, Yinghua
    Zhao, Qiang
    Cao, Zhiao
    [J]. ENERGIES, 2020, 13 (01)
  • [46] TEAM POLICY LEARNING FOR MULTI-AGENT REINFORCEMENT LEARNING
    Cassano, Lucas
    Alghunaim, Sulaiman A.
    Sayed, Ali H.
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 3062 - 3066
  • [47] Aggregation Transfer Learning for Multi-Agent Reinforcement learning
    Xu, Dongsheng
    Qiao, Peng
    Dou, Yong
    [J]. 2021 2ND INTERNATIONAL CONFERENCE ON BIG DATA & ARTIFICIAL INTELLIGENCE & SOFTWARE ENGINEERING (ICBASE 2021), 2021, : 547 - 551
  • [48] Learning to Communicate with Deep Multi-Agent Reinforcement Learning
    Foerster, Jakob N.
    Assael, Yannis M.
    de Freitas, Nando
    Whiteson, Shimon
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [49] Consensus Learning for Cooperative Multi-Agent Reinforcement Learning
    Xu, Zhiwei
    Zhang, Bin
    Li, Dapeng
    Zhang, Zeren
    Zhou, Guangchong
    Chen, Hao
    Fan, Guoliang
    [J]. THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 10, 2023, : 11726 - 11734
  • [50] Learning structured communication for multi-agent reinforcement learning
    Junjie Sheng
    Xiangfeng Wang
    Bo Jin
    Junchi Yan
    Wenhao Li
    Tsung-Hui Chang
    Jun Wang
    Hongyuan Zha
    [J]. Autonomous Agents and Multi-Agent Systems, 2022, 36