Time-domain optics for atomic quantum matter

被引:5
|
作者
Kanthak, Simon [1 ,2 ]
Gebbe, Martina [3 ]
Gersemann, Matthias [4 ]
Abend, Sven [4 ]
Rasel, Ernst M. [4 ]
Krutzik, Markus [1 ,2 ]
机构
[1] Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany
[2] Ferdinand Braun Inst gGmbH, Inst Hochstfrequenztech, Joint Lab Integrated Quantum Sensors, Gustav Kirchhoff Str 4, D-12489 Berlin, Germany
[3] Univ Bremen, Zentrum Angew Raumfahrt & Mikrogravitat ZARM, Fallturm 2, D-28359 Bremen, Germany
[4] Leibniz Univ Hannover, Inst Quantenopt, Welfengarten 1, D-30167 Hannover, Germany
来源
NEW JOURNAL OF PHYSICS | 2021年 / 23卷 / 09期
关键词
Bose-Einstein condensates; ultra-cold atoms; matter-wave lensing; time-domain optics; optical dipole traps; atom-chip traps; matter-wave telescope; BOSE-EINSTEIN CONDENSATE;
D O I
10.1088/1367-2630/ac1285
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate time-domain optics for atomic quantum matter. Within a matter-wave analog of the thin-lens formalism, we study optical lenses of different shapes and refractive powers to precisely control the dispersion of Bose-Einstein condensates. Anharmonicities of the lensing potential are incorporated in the formalism with a decomposition of the center-of-mass motion and expansion of the atoms, allowing to probe the lensing potential with micrometer resolution. By arranging two lenses in time formed by the potentials of an optical dipole trap and an atom-chip trap, we realize a magneto-optical matter-wave telescope. We employ this hybrid telescope to manipulate the expansion and aspect ratio of the ensembles. The experimental results are compared to numerical simulations that involve Gaussian shaped potentials to accommodate lens shapes beyond the harmonic approximation.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] 60 GHz Indoor Propagation With Time-Domain Geometric-Optics
    Lyu, Pengfei
    Xu, Xiaoyu
    Yan, Shuai
    Ren, Zhuoxiang
    IEEE TRANSACTIONS ON MAGNETICS, 2016, 52 (03)
  • [42] Study of optimal measurement conditions for time-domain diffuse optics systems
    Behera, Anurag
    Di Sieno, Laura
    Pifferi, Antonio
    Martelli, Fabrizio
    Dalla Mora, Alberto
    BIOPHOTONICS: PHOTONIC SOLUTIONS FOR BETTER HEALTH CARE VI, 2018, 10685
  • [43] Novel time-domain wave propagation scheme applied to integrated optics
    Rodríguez-Esquerre, VF
    Hernández-Figueroa, HE
    INTEGRATED PHOTONICS RESEARCH, TECHNICAL DIGEST, 2000, 45 : 9 - 11
  • [44] An improved time-domain beam propagation method for integrated optics components
    Jin, GH
    Harari, J
    Vilcot, JP
    Decoster, D
    IEEE PHOTONICS TECHNOLOGY LETTERS, 1997, 9 (03) : 348 - 350
  • [45] Time-domain squeezing and quantum distributions in the pulsed regime
    Adamyan, N. H.
    Adamyan, H. H.
    Kryuchkyan, G. Yu.
    PHYSICAL REVIEW A, 2008, 77 (02):
  • [46] Time-Domain Simulation of Three Dimensional Quantum Wires
    Sullivan, Dennis M.
    Mossman, Sean
    Kuzyk, Mark G.
    PLOS ONE, 2016, 11 (04):
  • [47] MULTIGIGAHERTZ TIME-DOMAIN TESTING OF THE QUANTUM FLUX PARAMETRON
    CASAS, J
    KAMIKAWAI, R
    MIYAMOTO, N
    GOTO, E
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 1991, 4 (11): : 606 - 609
  • [48] Quantum Finite-Difference Time-Domain Scheme
    Na, Dong-Yeop
    Chew, Weng Cho
    PROCEEDINGS OF THE 2020 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL ELECTROMAGNETICS (ICCEM 2020), 2020, : 62 - 63
  • [49] Experimental demonstration of a flexible time-domain quantum channel
    Xing, Xingxing
    Feizpour, Amir
    Hayat, Alex
    Steinberg, Aephraim M.
    OPTICS EXPRESS, 2014, 22 (21): : 25128 - 25136
  • [50] Time-domain simulation of two electrons in a quantum dot
    Sullivan, D
    Citrin, DS
    JOURNAL OF APPLIED PHYSICS, 2001, 89 (07) : 3841 - 3846