Time-domain optics for atomic quantum matter

被引:5
|
作者
Kanthak, Simon [1 ,2 ]
Gebbe, Martina [3 ]
Gersemann, Matthias [4 ]
Abend, Sven [4 ]
Rasel, Ernst M. [4 ]
Krutzik, Markus [1 ,2 ]
机构
[1] Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany
[2] Ferdinand Braun Inst gGmbH, Inst Hochstfrequenztech, Joint Lab Integrated Quantum Sensors, Gustav Kirchhoff Str 4, D-12489 Berlin, Germany
[3] Univ Bremen, Zentrum Angew Raumfahrt & Mikrogravitat ZARM, Fallturm 2, D-28359 Bremen, Germany
[4] Leibniz Univ Hannover, Inst Quantenopt, Welfengarten 1, D-30167 Hannover, Germany
来源
NEW JOURNAL OF PHYSICS | 2021年 / 23卷 / 09期
关键词
Bose-Einstein condensates; ultra-cold atoms; matter-wave lensing; time-domain optics; optical dipole traps; atom-chip traps; matter-wave telescope; BOSE-EINSTEIN CONDENSATE;
D O I
10.1088/1367-2630/ac1285
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate time-domain optics for atomic quantum matter. Within a matter-wave analog of the thin-lens formalism, we study optical lenses of different shapes and refractive powers to precisely control the dispersion of Bose-Einstein condensates. Anharmonicities of the lensing potential are incorporated in the formalism with a decomposition of the center-of-mass motion and expansion of the atoms, allowing to probe the lensing potential with micrometer resolution. By arranging two lenses in time formed by the potentials of an optical dipole trap and an atom-chip trap, we realize a magneto-optical matter-wave telescope. We employ this hybrid telescope to manipulate the expansion and aspect ratio of the ensembles. The experimental results are compared to numerical simulations that involve Gaussian shaped potentials to accommodate lens shapes beyond the harmonic approximation.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Time-domain simulation of a universal quantum gate
    Sullivan, DM
    Citrin, DS
    JOURNAL OF APPLIED PHYSICS, 2004, 96 (03) : 1540 - 1546
  • [32] Quantum diffraction of wave function in time-domain
    Li YongFang
    Ren LiQing
    Ma RuiQiong
    Qiu Xu
    Liu Juan
    Fan Rong
    Fu ZhenXing
    SCIENCE IN CHINA SERIES G-PHYSICS MECHANICS & ASTRONOMY, 2009, 52 (06): : 873 - 876
  • [33] Atomic-scale terahertz time-domain spectroscopy
    Jelic, V.
    Adams, S.
    Hassan, M.
    Cleland-Host, K.
    Ammerman, S. E.
    Cocker, T. L.
    NATURE PHOTONICS, 2024, 18 (09) : 898 - 904
  • [34] Time-domain atomic dynamics with attosecond XUV pulses
    Drescher, M
    JOURNAL OF MODERN OPTICS, 2005, 52 (2-3) : 429 - 438
  • [35] Measurement of the sensitivity function in a time-domain atomic interferometer
    Cheinet, Patrick
    Canuel, Benjamin
    Dos Santos, Franck Pereira
    Gauguet, Alexandre
    Yver-Leduc, Florence
    Landragin, Arnaud
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2008, 57 (06) : 1141 - 1148
  • [36] TIME-DOMAIN METHODS FOR DIFFUSIVE TRANSPORT IN SOFT MATTER
    Fricks, John
    Yao, Lingxing
    Elston, Timothy C.
    Forest, M. Gregory
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2009, 69 (05) : 1277 - 1308
  • [37] A time-domain physical optics heuristic approach to passive intermodulation scattering
    Selleri, S
    Bolli, P
    Pelosi, G
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2001, 43 (02) : 203 - 209
  • [38] Time-Domain Physical-Optics method for transient scattering analysis
    Yang Lingxia
    Ge Debiao
    Wei Bing
    CEEM' 2006: ASIA-PACIFIC CONFERENCE ON ENVIRONMENTAL ELECTROMAGNETICS, VOLS 1 AND 2, PROCEEDINGS, 2006, : 861 - +
  • [39] Time-domain Fourier optics for polarization-mode dispersion compensation
    Romagnoli, M
    Franco, P
    Corsini, R
    Schiffini, A
    Midrio, M
    OPTICS LETTERS, 1999, 24 (17) : 1197 - 1199
  • [40] Improved time-domain beam propagation method for integrated optics components
    UMR CNRS, Villeneuve d'Ascq, France
    IEEE Photonics Technol Lett, 3 (348-350):