Modeling of Explainable Artificial Intelligence for Biomedical Mental Disorder Diagnosis

被引:4
|
作者
Hilal, Anwer Mustafa [1 ]
Issaoui, Imene [2 ]
Obayya, Marwa [3 ]
Al-Wesabi, Fahd N. [4 ,5 ]
Nemri, Nadhem [6 ]
Hamza, Manar Ahmed [1 ]
Al Duhayyim, Mesfer [7 ]
Zamani, Abu Sarwar [1 ]
机构
[1] Prince Sattam Bin Abdulaziz Univ, Dept Comp & Self Dev, Preparatory Year Deanship, Alkharj 16278, Saudi Arabia
[2] Qassim Univ, Community Coll, Dept Nat & Appl Sci, Buraydah, Saudi Arabia
[3] Princess Nourah Bint Abdulrahman Univ, Coll Engn, Dept Biomed Engn, Riyadh 11564, Saudi Arabia
[4] King Khalid Univ, Dept Comp Sci, Muhayel Aseer, Saudi Arabia
[5] Sanaa Univ, Fac Comp & IT, Sanaa 31220, Yemen
[6] King Khalid Univ, Dept Informat Syst, Muhayel Aseer 62529, Saudi Arabia
[7] Prince Sattam Bin Abdulaziz Univ, Coll Community Aflaj, Dept Nat & Appl Sci, Al Kharj 16278, Saudi Arabia
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2022年 / 71卷 / 02期
关键词
Explainable artificial intelligence; autism spectral disorder; feature selection; data classification; machine learning; metaheuristics;
D O I
10.32604/cmc.2022.022663
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The abundant existence of both structured and unstructured data and rapid advancement of statistical models stressed the importance of introducing Explainable Artificial Intelligence (XAI), a process that explains how prediction is done in AI models. Biomedical mental disorder, i.e., Autism Spectral Disorder (ASD) needs to be identified and classified at early stage itself in order to reduce health crisis. With this background, the current paper presents XAI-based ASD diagnosis (XAI-ASD) model to detect and classify ASD precisely. The proposed XAI-ASD technique involves the design of Bacterial Foraging Optimization (BFO)-based Feature Selection (FS) technique. In addition, Whale Optimization Algorithm (WOA) with Deep Belief Network (DBN) model is also applied for ASD classification process in which the hyperparameters of DBN model are optimally tuned with the help of WOA. In order to ensure a better ASD diagnostic outcome, a series of simulation process was conducted on ASD dataset.
引用
下载
收藏
页码:3853 / 3867
页数:15
相关论文
共 50 条
  • [31] On the Need of an Explainable Artificial Intelligence
    Zanni-Merk, Cecilia
    INFORMATION SYSTEMS ARCHITECTURE AND TECHNOLOGY, ISAT 2019, PT I, 2020, 1050 : 3 - 3
  • [32] Explainable Artificial Intelligence for Cybersecurity
    Sharma, Deepak Kumar
    Mishra, Jahanavi
    Singh, Aeshit
    Govil, Raghav
    Srivastava, Gautam
    Lin, Jerry Chun-Wei
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 103
  • [33] Explainable Artificial Intelligence: A Survey
    Dosilovic, Filip Karlo
    Brcic, Mario
    Hlupic, Nikica
    2018 41ST INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2018, : 210 - 215
  • [34] Explainable artificial intelligence in ophthalmology
    Tan, Ting Fang
    Dai, Peilun
    Zhang, Xiaoman
    Jin, Liyuan
    Poh, Stanley
    Hong, Dylan
    Lim, Joshua
    Lim, Gilbert
    Teo, Zhen Ling
    Liu, Nan
    Ting, Daniel Shu Wei
    CURRENT OPINION IN OPHTHALMOLOGY, 2023, 34 (05) : 422 - 430
  • [35] A Review of Explainable Artificial Intelligence
    Lin, Kuo-Yi
    Liu, Yuguang
    Li, Li
    Dou, Runliang
    ADVANCES IN PRODUCTION MANAGEMENT SYSTEMS: ARTIFICIAL INTELLIGENCE FOR SUSTAINABLE AND RESILIENT PRODUCTION SYSTEMS, APMS 2021, PT IV, 2021, 633 : 574 - 584
  • [36] An eXplainable Artificial Intelligence analysis of Raman spectra for thyroid cancer diagnosis
    Loredana Bellantuono
    Raffaele Tommasi
    Ester Pantaleo
    Martina Verri
    Nicola Amoroso
    Pierfilippo Crucitti
    Michael Di Gioacchino
    Filippo Longo
    Alfonso Monaco
    Anda Mihaela Naciu
    Andrea Palermo
    Chiara Taffon
    Sabina Tangaro
    Anna Crescenzi
    Armida Sodo
    Roberto Bellotti
    Scientific Reports, 13
  • [37] On the Use of Explainable Artificial Intelligence for the Differential Diagnosis of Pigmented Skin Lesions
    Hurtado, Sandro
    Nematzadeh, Hossein
    Garcia-Nieto, Jose
    Berciano-Guerrero, Miguel-Angel
    Navas-Delgado, Ismael
    BIOINFORMATICS AND BIOMEDICAL ENGINEERING, PT I, 2022, : 319 - 329
  • [38] An eXplainable Artificial Intelligence analysis of Raman spectra for thyroid cancer diagnosis
    Bellantuono, Loredana
    Tommasi, Raffaele
    Pantaleo, Ester
    Verri, Martina
    Amoroso, Nicola
    Crucitti, Pierfilippo
    Di Gioacchino, Michael
    Longo, Filippo
    Monaco, Alfonso
    Naciu, Anda Mihaela
    Palermo, Andrea
    Taffon, Chiara
    Tangaro, Sabina
    Crescenzi, Anna
    Sodo, Armida
    Bellotti, Roberto
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [39] Explainable artificial intelligence modeling for corporate social responsibility and financial performance
    Lachuer, Julien
    Ben Jabeur, Sami
    JOURNAL OF ASSET MANAGEMENT, 2022, 23 (07) : 619 - 630
  • [40] Explainable artificial intelligence in geoscience: A glimpse into the future of landslide susceptibility modeling
    Dahal, Ashok
    Lombardo, Luigi
    COMPUTERS & GEOSCIENCES, 2023, 176