Modeling of Explainable Artificial Intelligence for Biomedical Mental Disorder Diagnosis

被引:4
|
作者
Hilal, Anwer Mustafa [1 ]
Issaoui, Imene [2 ]
Obayya, Marwa [3 ]
Al-Wesabi, Fahd N. [4 ,5 ]
Nemri, Nadhem [6 ]
Hamza, Manar Ahmed [1 ]
Al Duhayyim, Mesfer [7 ]
Zamani, Abu Sarwar [1 ]
机构
[1] Prince Sattam Bin Abdulaziz Univ, Dept Comp & Self Dev, Preparatory Year Deanship, Alkharj 16278, Saudi Arabia
[2] Qassim Univ, Community Coll, Dept Nat & Appl Sci, Buraydah, Saudi Arabia
[3] Princess Nourah Bint Abdulrahman Univ, Coll Engn, Dept Biomed Engn, Riyadh 11564, Saudi Arabia
[4] King Khalid Univ, Dept Comp Sci, Muhayel Aseer, Saudi Arabia
[5] Sanaa Univ, Fac Comp & IT, Sanaa 31220, Yemen
[6] King Khalid Univ, Dept Informat Syst, Muhayel Aseer 62529, Saudi Arabia
[7] Prince Sattam Bin Abdulaziz Univ, Coll Community Aflaj, Dept Nat & Appl Sci, Al Kharj 16278, Saudi Arabia
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2022年 / 71卷 / 02期
关键词
Explainable artificial intelligence; autism spectral disorder; feature selection; data classification; machine learning; metaheuristics;
D O I
10.32604/cmc.2022.022663
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The abundant existence of both structured and unstructured data and rapid advancement of statistical models stressed the importance of introducing Explainable Artificial Intelligence (XAI), a process that explains how prediction is done in AI models. Biomedical mental disorder, i.e., Autism Spectral Disorder (ASD) needs to be identified and classified at early stage itself in order to reduce health crisis. With this background, the current paper presents XAI-based ASD diagnosis (XAI-ASD) model to detect and classify ASD precisely. The proposed XAI-ASD technique involves the design of Bacterial Foraging Optimization (BFO)-based Feature Selection (FS) technique. In addition, Whale Optimization Algorithm (WOA) with Deep Belief Network (DBN) model is also applied for ASD classification process in which the hyperparameters of DBN model are optimally tuned with the help of WOA. In order to ensure a better ASD diagnostic outcome, a series of simulation process was conducted on ASD dataset.
引用
下载
收藏
页码:3853 / 3867
页数:15
相关论文
共 50 条
  • [21] Paving the Way to Explainable Artificial Intelligence with Fuzzy Modeling Tutorial
    Mencar, Corrado
    Alonso, Jose M.
    FUZZY LOGIC AND APPLICATIONS, WILF 2018, 2019, 11291 : 215 - 227
  • [22] Explainable artificial intelligence for mental health through transparency and interpretability for understandability
    Dan W. Joyce
    Andrey Kormilitzin
    Katharine A. Smith
    Andrea Cipriani
    npj Digital Medicine, 6
  • [23] Explainable artificial intelligence for mental health through transparency and interpretability for understandability
    Joyce, Dan W.
    Kormilitzin, Andrey
    Smith, Katharine A.
    Cipriani, Andrea
    NPJ DIGITAL MEDICINE, 2023, 6 (01)
  • [24] Prediction of attention deficit hyperactivity disorder based on explainable artificial intelligence
    Navarro-Soria, Ignasi
    Rico-Juan, Juan Ramon
    Juarez-Ruiz de Mier, Rocio
    Lavigne-Cervan, Rocio
    APPLIED NEUROPSYCHOLOGY-CHILD, 2024,
  • [25] Explainable Artificial Intelligence for Kids
    Alonso, Jose M.
    PROCEEDINGS OF THE 11TH CONFERENCE OF THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY (EUSFLAT 2019), 2019, 1 : 134 - 141
  • [26] Explainable and Trustworthy Artificial Intelligence
    Alonso-Moral, Jose Maria
    Mencar, Corrado
    Ishibuchi, Hisao
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2022, 17 (01) : 14 - 15
  • [27] Review of Explainable Artificial Intelligence
    Zhao, Yanyu
    Zhao, Xiaoyong
    Wang, Lei
    Wang, Ningning
    Computer Engineering and Applications, 2023, 59 (14) : 1 - 14
  • [28] Explainable artificial intelligence in pathology
    Klauschen, Frederick
    Dippel, Jonas
    Keyl, Philipp
    Jurmeister, Philipp
    Bockmayr, Michael
    Mock, Andreas
    Buchstab, Oliver
    Alber, Maximilian
    Ruff, Lukas
    Montavon, Gregoire
    Mueller, Klaus-Robert
    PATHOLOGIE, 2024, : 133 - 139
  • [29] Explainable and responsible artificial intelligence
    Christian Meske
    Babak Abedin
    Mathias Klier
    Fethi Rabhi
    Electronic Markets, 2022, 32 : 2103 - 2106
  • [30] Explainable Artificial Intelligence in education
    Khosravi H.
    Shum S.B.
    Chen G.
    Conati C.
    Tsai Y.-S.
    Kay J.
    Knight S.
    Martinez-Maldonado R.
    Sadiq S.
    Gašević D.
    Computers and Education: Artificial Intelligence, 2022, 3