Nonautonomous discrete bright soliton solutions and interaction management for the Ablowitz-Ladik equation

被引:18
|
作者
Yu, Fajun [1 ]
机构
[1] Shenyang Normal Univ, Sch Math & Systemat Sci, Shenyang 110034, Peoples R China
来源
PHYSICAL REVIEW E | 2015年 / 91卷 / 03期
基金
中国国家自然科学基金;
关键词
NONLINEAR SCHRODINGER-EQUATION; DIFFERENTIAL-DIFFERENCE EQUATIONS; QUASI-PERIODIC SOLUTIONS; WAVE-GUIDES; LATTICE; MODEL; SYSTEMS; ARRAYS;
D O I
10.1103/PhysRevE.91.032914
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present the nonautonomous discrete bright soliton solutions and their interactions in the discrete Ablowitz-Ladik (DAL) equation with variable coefficients, which possesses complicated wave propagation in time and differs from the usual bright soliton waves. The differential-difference similarity transformation allows us to relate the discrete bright soliton solutions of the inhomogeneous DAL equation to the solutions of the homogeneous DAL equation. Propagation and interaction behaviors of the nonautonomous discrete solitons are analyzed through the one-and two-soliton solutions. We study the discrete snaking behaviors, parabolic behaviors, and interaction behaviors of the discrete solitons. In addition, the interaction management with free functions and dynamic behaviors of these solutions is investigated analytically, which have certain applications in electrical and optical systems.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Nonlocal Reductions of the Ablowitz-Ladik Equation
    Grahovski, G. G.
    Mohammed, A. J.
    Susanto, H.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2018, 197 (01) : 1412 - 1429
  • [22] Doubly periodic wave solutions and soliton solutions of Ablowitz-Ladik lattice system
    Huang, Wenhua
    Liu, Yulu
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2008, 47 (02) : 338 - 349
  • [23] Thresholds for soliton creation in the Ablowitz-Ladik lattice
    Adrian Espinola-Rocha, J.
    Kevrekidis, P. G.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 80 (04) : 693 - 706
  • [24] Symplectic methods for the Ablowitz-Ladik discrete nonlinear Schrodinger equation
    Tang, Yifa
    Cao, Jianwen
    Liu, Xiangtao
    Sun, Yuanchang
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (10) : 2425 - 2437
  • [25] Decomposition of the discrete Ablowitz-Ladik hierarchy
    Geng, Xianguo
    Dai, H. H.
    Zhu, Junyi
    [J]. STUDIES IN APPLIED MATHEMATICS, 2007, 118 (03) : 281 - 312
  • [26] Symplectic integrators for the Ablowitz-Ladik discrete nonlinear Schrödinger equation
    Schober, C.M.
    [J]. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 259 (02): : 140 - 151
  • [27] Modulational instability and dynamics of multi-rogue wave solutions for the discrete Ablowitz-Ladik equation
    Wen, Xiao-Yong
    Yan, Zhenya
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (07)
  • [28] Perturbation-induced radiation by the Ablowitz-Ladik soliton
    Doktorov, EV
    Matsuka, NP
    Rothos, VM
    [J]. PHYSICAL REVIEW E, 2003, 68 (06):
  • [29] Rogue-wave solutions for a discrete Ablowitz-Ladik equation with variable coefficients for an electrical lattice
    Wu, Xiao-Yu
    Tian, Bo
    Yin, Hui-Min
    Du, Zhong
    [J]. NONLINEAR DYNAMICS, 2018, 93 (03) : 1635 - 1645
  • [30] Soliton-impurity interaction in two Ablowitz-Ladik chains with different coupling
    Kamburova, R. S.
    Primatarowa, M. T.
    [J]. 18TH INTERNATIONAL SCHOOL ON CONDENSED MATTER PHYSICS: CHALLENGES OF NANOSCALE SCIENCE: THEORY, MATERIALS, APPLICATIONS, 2014, 558