Geometric lower bounds for parametric matroid optimization

被引:12
|
作者
Eppstein, D [1 ]
机构
[1] Univ Calif Irvine, Dept Informat & Comp Sci, Irvine, CA 92717 USA
关键词
D O I
10.1007/PL00009396
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We relate the sequence of minimum bases of a matroid with linearly varying weights to three problems from combinatorial geometry: k-sets, lower envelopes of line segments, and convex polygons in line arrangements. Using these relations we show new lower bounds on the number of base changes in such sequences: Omega (nr(1/3)) for a general n-element matroid with rank r, and Omega (m alpha(n)) for the special case of parametric graph minimum spanning trees. The only previous lower bound was n (n log r) for uniform matroids; upper bounds of O (mn(1/2)) for arbitrary matroids and O (mn(1/2)/log* n) for uniform matroids were also known.
引用
收藏
页码:463 / 476
页数:14
相关论文
共 50 条
  • [1] Geometric Lower Bounds for Parametric Matroid Optimization
    D. Eppstein
    [J]. Discrete & Computational Geometry, 1998, 20 : 463 - 476
  • [2] Lower bounds for geometric diameter problems
    Fournier, H
    Vigneron, A
    [J]. LATIN 2006: THEORETICAL INFORMATICS, 2006, 3887 : 467 - 478
  • [3] LOWER BOUNDS ON GEOMETRIC RAMSEY FUNCTIONS
    Elias, Marek
    Matousek, Jiri
    Roldan-Pensado, Edgardo
    Safernova, Zuzana
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (04) : 1960 - 1970
  • [4] Parametric matroid interdiction
    Hausbrandt, Nils
    Bachtler, Oliver
    Ruzika, Stefan
    Schaefer, Luca E.
    [J]. DISCRETE OPTIMIZATION, 2024, 51
  • [5] Some lower bounds on geometric separability problems
    Arkin, EM
    Hurtado, F
    Mitchell, JSB
    Seara, C
    Skiena, SS
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2006, 16 (01) : 1 - 26
  • [6] Geometric lower bounds for the normalized height of hypersurfaces
    Pontreau, Corentin
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2006, 2 (04) : 555 - 568
  • [7] Lower bounds in on-line geometric searching
    Schuierer, S
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2001, 18 (01): : 37 - 53
  • [8] Fractal Dimension and Lower Bounds for Geometric Problems
    Anastasios Sidiropoulos
    Kritika Singhal
    Vijay Sridhar
    [J]. Discrete & Computational Geometry, 2021, 66 : 32 - 67
  • [9] Lower bounds on some geometric quantities and applications
    Leung, MC
    [J]. GEOMETRY FROM THE PACIFIC RIM, 1997, : 207 - 218
  • [10] A geometric approach to quantum circuit lower bounds
    Nielsen, MA
    [J]. QUANTUM INFORMATION & COMPUTATION, 2006, 6 (03) : 213 - 262