Fractal Dimension and Lower Bounds for Geometric Problems

被引:0
|
作者
Anastasios Sidiropoulos
Kritika Singhal
Vijay Sridhar
机构
[1] University of Illinois at Chicago,Department of Computer Science
[2] The Ohio State University,Department of Mathematics
[3] The Ohio State University,Department of Computer Science and Engineering
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the complexity of geometric problems on spaces of low fractal dimension. It was recently shown in Sidiropoulos and Sridhar (33rd International Symposium on Computational Geometry (Brisbane 2017). Leibniz Int. Proc. Inform., vol. 77, # 58. Leibniz-Zent. Inform., Wadern, 2017) that several problems admit improved solutions when the input is a pointset in Euclidean space with fractal dimension smaller than the ambient dimension. In this paper we prove nearly-matching lower bounds, thus establishing nearly-optimal bounds for various problems as a function of the fractal dimension. More specifically, we show that for any integer d>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d > 1$$\end{document}, any δ∈(1,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta \in (1,d)$$\end{document}, and any n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \in {\mathbb {N}}$$\end{document}, there exists a set X of n points in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{d}$$\end{document}, with fractal dimension δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} such that for any ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon > 0$$\end{document} and c≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c \ge 1$$\end{document}, any c-spanner of X has treewidth Ω(n1-1/(δ-ϵ)/cd-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega ( n^{1-1/(\delta - \epsilon )}/c^{d-1} )$$\end{document}. This lower bound matches the previous upper bound. The construction used to prove this lower bound on the treewidth of spanners, can also be used to derive lower bounds on the running time of algorithms for various problems, assuming the Exponential Time Hypothesis. We provide two prototypical results of this type:For any δ∈(1,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta \in (1,d)$$\end{document} and any ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document}, d-dimensional Euclidean TSP on n points with fractal dimension at most δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} cannot be solved in time 2O(n1-1/(δ-ε))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{O(n^{1-1/(\delta - \varepsilon )} )}$$\end{document}. The best-known upper bound is 2O(n1-1/δlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{O(n^{1-1/\delta } \log n)}$$\end{document}.For any δ∈(1,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta \in (1,d)$$\end{document} and any ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document}, the problem of finding k-pairwise non-intersecting d-dimensional unit balls/axis-parallel unit cubes with centers having fractal dimension at most δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} cannot be solved in time f(k)nO(k1-1/(δ-ε))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(k)\ n^{O (k^{1-1/(\delta - \varepsilon )})}$$\end{document} for any computable function f. The best-known upper bound is nO(k1-1/δlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{O(k^{1-1/\delta } \log n)}$$\end{document}. The above results nearly match previously known upper bounds from [op. cit.], and generalize analogous lower bounds for the case of ambient dimension due to Marx and Sidiropoulos (30th Annual Symposium on Computational Geometry (Kyoto 2014), pp. 67–76. ACM, New York, 2014).
引用
收藏
页码:32 / 67
页数:35
相关论文
共 50 条
  • [1] Fractal Dimension and Lower Bounds for Geometric Problems
    Sidiropoulos, Anastasios
    Singhal, Kritika
    Sridhar, Vijay
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2021, 66 (01) : 32 - 67
  • [2] Lower bounds for geometric diameter problems
    Fournier, H
    Vigneron, A
    [J]. LATIN 2006: THEORETICAL INFORMATICS, 2006, 3887 : 467 - 478
  • [3] Some lower bounds on geometric separability problems
    Arkin, EM
    Hurtado, F
    Mitchell, JSB
    Seara, C
    Skiena, SS
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2006, 16 (01) : 1 - 26
  • [4] BOUNDS FOR THE FRACTAL DIMENSION OF SPACE
    SCHAFER, A
    MULLER, B
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (18): : 3891 - 3902
  • [5] Lower bounds for the Hausdorff dimension of the Geometric Lorenz attractor: The homoclinic case
    Lizana, Cristina
    Mora, Leonardo
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2008, 22 (03): : 699 - 709
  • [6] Tight Lower Bounds on the VC-dimension of Geometric Set Systems
    Csikos, Monika
    Mustafa, Nabil H.
    Kupayskii, Audrey
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [7] Tight lower bounds on the VC-dimension of geometric set systems
    Csikós, Monika
    Mustafa, Nabil H.
    Kupavskii, Andrey
    [J]. Journal of Machine Learning Research, 2019, 20
  • [8] Geometric Clustering: Fixed-Parameter Tractability and Lower Bounds with Respect to the Dimension
    Cabello, Sergio
    Giannopoulos, Panos
    Knauer, Christian
    Rote, Guenter
    [J]. PROCEEDINGS OF THE NINETEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2008, : 836 - +
  • [9] Geometric Clustering: Fixed-Parameter Tractability and Lower Bounds with Respect to the Dimension
    Cabello, Sergio
    Giannopoulos, Panos
    Knauer, Christian
    Marx, Daniel
    Rote, Guenter
    [J]. ACM TRANSACTIONS ON ALGORITHMS, 2011, 7 (04)
  • [10] Error bounds on the estimation of fractal dimension
    Dubuc, B
    Dubuc, S
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (02) : 602 - 626