Geometric lower bounds for parametric matroid optimization

被引:12
|
作者
Eppstein, D [1 ]
机构
[1] Univ Calif Irvine, Dept Informat & Comp Sci, Irvine, CA 92717 USA
关键词
D O I
10.1007/PL00009396
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We relate the sequence of minimum bases of a matroid with linearly varying weights to three problems from combinatorial geometry: k-sets, lower envelopes of line segments, and convex polygons in line arrangements. Using these relations we show new lower bounds on the number of base changes in such sequences: Omega (nr(1/3)) for a general n-element matroid with rank r, and Omega (m alpha(n)) for the special case of parametric graph minimum spanning trees. The only previous lower bound was n (n log r) for uniform matroids; upper bounds of O (mn(1/2)) for arbitrary matroids and O (mn(1/2)/log* n) for uniform matroids were also known.
引用
收藏
页码:463 / 476
页数:14
相关论文
共 50 条
  • [21] New Lower Bounds for the Geometric-Arithmetic Index
    Martinez-Perez, Alvaro
    Rodriguez, Jose M.
    [J]. MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2018, 79 (02) : 451 - 466
  • [22] Lower Bounds on the State Complexity of Geometric Goppa Codes
    T. Blackmore
    G. H. Norton
    [J]. Designs, Codes and Cryptography, 2002, 25 : 95 - 115
  • [23] Explicit Lower Bounds via Geometric Complexity Theory
    Buergisser, Peter
    Ikenmeyer, Christian
    [J]. STOC'13: PROCEEDINGS OF THE 2013 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2013, : 141 - 150
  • [24] Recent lower bounds for geometric-arithmetic index
    Portilla, Ana
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    [J]. DISCRETE MATHEMATICS LETTERS, 2019, 1 : 59 - 82
  • [25] Information Geometric Approach to Bayesian Lower Error Bounds
    Kumar, M. Ashok
    Mishra, Kumar Vijay
    [J]. 2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 746 - 750
  • [26] Inference on the number of species through geometric lower bounds
    Mao, Chang Xuan
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (476) : 1663 - 1670
  • [27] Lower bounds on the state complexity of geometric Goppa codes
    Blackmore, T
    Norton, GH
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2002, 25 (01) : 95 - 115
  • [28] Improved upper and lower bounds on a geometric Ramsey problem
    Lavrov, Mikhail
    Lee, Mitchell
    Mackey, John
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2014, 42 : 135 - 144
  • [29] LOWER BOUNDS FOR A SUBEXPONENTIAL OPTIMIZATION ALGORITHM
    MATOUSEK, J
    [J]. RANDOM STRUCTURES & ALGORITHMS, 1994, 5 (04) : 591 - 607
  • [30] Parametric Matroid of Rough Set
    Liu, Yanfang
    Zhao, Hong
    Zhu, William
    [J]. INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2015, 23 (06) : 893 - 908