Using stochastic approximation for parameter estimation in option pricing

被引:0
|
作者
Yin, G. [1 ]
Zhang, Q. [2 ]
Zhuang, C. [2 ]
机构
[1] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[2] Univ Georgia, Dept Math, Athens, GA 30602 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper focuses on option pricing using a stochastic optimization algorithm. The underlying stock price changes according to a set of geometric Brownian motions coupled by a continuous-time finite state Markov chain. A recursive stochastic optimization algorithm is constructed to estimate the implied volatility. Convergence analysis of the algorithm is provided together with rate of convergence. Real market data is used to compare our algorithm with other schemes.
引用
收藏
页码:5951 / +
页数:2
相关论文
共 50 条
  • [21] OPTION PRICING USING A REGIME SWITCHING STOCHASTIC DISCOUNT FACTOR
    Elliott, Robert J.
    Hamada, Ahmed S.
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2014, 17 (03)
  • [22] Option Pricing and Parameter Estimation for Uncertain Mean-Reverting Currency Model
    Zhou, Lujun
    He, Zhenhua
    Liu, Jianmin
    Yin, Xiaolan
    COMPUTATIONAL ECONOMICS, 2025,
  • [23] Stochastic approximation techniques, applied to parameter estimation in a biological model
    Renotte, C
    Wouwer, AV
    IDAACS'2003: PROCEEDINGS OF THE SECOND IEEE INTERNATIONAL WORKSHOP ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS: TECHNOLOGY AND APPLICATIONS, 2003, : 261 - 265
  • [24] Estimation of parametric homogeneous stochastic volatility pricing formulae based on option data
    Xu, Zheng
    ECONOMICS LETTERS, 2013, 120 (03) : 369 - 373
  • [25] Distributed Parameter Estimation in Sensor Networks Based on Stochastic Approximation
    Lei, Jinlong
    Chen, Han-Fu
    2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 7487 - 7492
  • [26] VIX Option Pricing for Non-Parameter Heston Stochastic Local Volatility Model
    Ma, Junmei
    Gong, Jiaxing
    Xu, Wei
    JOURNAL OF DERIVATIVES, 2024, 31 (03): : 50 - 73
  • [27] Generalized parameter functions for option pricing
    Andreou, Panayiotis C.
    Charalambous, Chris
    Martzoukos, Spiros H.
    JOURNAL OF BANKING & FINANCE, 2010, 34 (03) : 633 - 646
  • [28] Option pricing in a stochastic and fuzzy environment
    Yoshida, Y
    JOINT 9TH IFSA WORLD CONGRESS AND 20TH NAFIPS INTERNATIONAL CONFERENCE, PROCEEDINGS, VOLS. 1-5, 2001, : 592 - 597
  • [29] Option pricing with stochastic volatility models
    Herzel S.
    Decisions in Economics and Finance, 2000, 23 (2) : 75 - 99
  • [30] The Classical and Stochastic Approach to Option Pricing
    Benada, Ludek
    Cupal, Martin
    EUROPEAN FINANCIAL SYSTEMS 2014, 2014, : 49 - 55