Compactifications of rational maps, and the implicit equations of their images

被引:4
|
作者
Botbol, Nicolas [1 ,2 ]
机构
[1] Univ Buenos Aires, FCEN, Dept Matemat, RA-1053 Buenos Aires, DF, Argentina
[2] Univ Paris 06, Inst Math Jussieu, Paris VI, France
关键词
SURFACES;
D O I
10.1016/j.jpaa.2010.07.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give different compactifications for the domain and the codomain of an affine rational map f which parameterizes a hypersurface. We show that the closure of the image of this map (with possibly some other extra hypersurfaces) can be represented by a matrix of linear syzygies. We compactify A(n-1) into an (n - 1)-dimensional projective arithmetically Cohen-Macaulay subscheme of some P-N. One particular interesting compactification of A(n-1) is the toric variety associated to the Newton polytope of the polynomials defining f. We consider two different compactifications for the codomain of f: P-n and (P-1)(n). In both cases we give sufficient conditions, in terms of the nature of the base locus of the map, for getting a matrix representation of its closed image, without involving extra hypersurfaces. This constitutes a direct generalization of the corresponding results established by Laurent Buse and Jean-Pierre jouanolou (2003) [12], Laurent Buse et al. (2009)[9], Laurent Buse and Marc Dohm (2007) [11], Nicolas Botbol et al. (2009) [5] and Nicolas Botbol (2009) [4]. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1053 / 1068
页数:16
相关论文
共 50 条
  • [41] IMPLICIT INTEGRODIFFERENTIAL EQUATIONS
    FAVINI, A
    VOLTERRA INTEGRODIFFERENTIAL EQUATIONS IN BANACH SPACES AND APPLICATIONS, 1989, 190 : 141 - 156
  • [42] Implicit Boolean equations
    Levchenkov, VP
    DOKLADY MATHEMATICS, 2000, 61 (03) : 340 - 343
  • [43] Rational Misiurewicz Maps are Rare
    Aspenberg, Magnus
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 291 (03) : 645 - 658
  • [44] Invariant graphs of rational maps
    Cui, Guizhen
    Gao, Yan
    Zeng, Jinsong
    ADVANCES IN MATHEMATICS, 2022, 404
  • [45] Continuous rational maps into spheres
    Kucharz, Wojciech
    MATHEMATISCHE ZEITSCHRIFT, 2016, 283 (3-4) : 1201 - 1215
  • [46] Rational maps as Schwarzian primitives
    GuiZhen Cui
    Yan Gao
    Hans Henrik Rugh
    Lei Tan
    Science China Mathematics, 2016, 59 : 1267 - 1284
  • [47] RATIONAL MAPS WITH REAL MULTIPLIERS
    Eremenko, Alexandre
    van Strien, Sebastian
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (12) : 6453 - 6463
  • [48] Critical intermittency in rational maps
    Homburg, Ale Jan
    Peters, Han
    Rabodonandrianandraina, Vahatra
    NONLINEARITY, 2024, 37 (06)
  • [49] A characterization of hyperbolic rational maps
    Guizhen Cui
    Lei Tan
    Inventiones mathematicae, 2011, 183 : 451 - 516
  • [50] Continuous rational maps into spheres
    Wojciech Kucharz
    Mathematische Zeitschrift, 2016, 283 : 1201 - 1215