Compactifications of rational maps, and the implicit equations of their images

被引:4
|
作者
Botbol, Nicolas [1 ,2 ]
机构
[1] Univ Buenos Aires, FCEN, Dept Matemat, RA-1053 Buenos Aires, DF, Argentina
[2] Univ Paris 06, Inst Math Jussieu, Paris VI, France
关键词
SURFACES;
D O I
10.1016/j.jpaa.2010.07.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give different compactifications for the domain and the codomain of an affine rational map f which parameterizes a hypersurface. We show that the closure of the image of this map (with possibly some other extra hypersurfaces) can be represented by a matrix of linear syzygies. We compactify A(n-1) into an (n - 1)-dimensional projective arithmetically Cohen-Macaulay subscheme of some P-N. One particular interesting compactification of A(n-1) is the toric variety associated to the Newton polytope of the polynomials defining f. We consider two different compactifications for the codomain of f: P-n and (P-1)(n). In both cases we give sufficient conditions, in terms of the nature of the base locus of the map, for getting a matrix representation of its closed image, without involving extra hypersurfaces. This constitutes a direct generalization of the corresponding results established by Laurent Buse and Jean-Pierre jouanolou (2003) [12], Laurent Buse et al. (2009)[9], Laurent Buse and Marc Dohm (2007) [11], Nicolas Botbol et al. (2009) [5] and Nicolas Botbol (2009) [4]. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1053 / 1068
页数:16
相关论文
共 50 条
  • [21] COMPACTIFICATIONS WITH MINIMUM RIM-TYPES OF RATIONAL SPACES
    ILIADIS, SD
    TYMCHATYN, ED
    HOUSTON JOURNAL OF MATHEMATICS, 1991, 17 (03): : 311 - 323
  • [22] ON THE MINIMAL FIELD OF DEFINITION OF RATIONAL MAPS: RATIONAL MAPS OF ODD SIGNATURE
    Hidalgo, Ruben A.
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2018, 43 : 685 - 692
  • [23] Rational points on compactifications of semi-simple groups
    Shalika, Joseph
    Takloo-Bighash, Ramin
    Tschinkel, Yuri
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 20 (04) : 1135 - 1186
  • [24] Alternate compactifications of the moduli space of genus one maps
    Viscardi, Michael
    MANUSCRIPTA MATHEMATICA, 2012, 139 (1-2) : 201 - 236
  • [25] Alternate compactifications of the moduli space of genus one maps
    Michael Viscardi
    Manuscripta Mathematica, 2012, 139 : 201 - 236
  • [26] Skyrmions and rational maps
    Ioannidou, T
    Piette, B
    Sutcliffe, P
    Zakrzewski, W
    NONLINEARITY, 2001, 14 (01) : C1 - C5
  • [27] Parabolic rational maps
    Haydn, N
    Isola, S
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 63 : 673 - 689
  • [28] ON DECOMPOSABLE RATIONAL MAPS
    Cabrera, Carlos
    Makienko, Peter
    CONFORMAL GEOMETRY AND DYNAMICS, 2011, 15 : 210 - 218
  • [29] RATIONAL RIEMANN MAPS
    ERKAMA, T
    LECTURE NOTES IN MATHEMATICS, 1988, 1351 : 101 - 109
  • [30] Rational CR maps
    D'Angelo, John P. P.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2023, 34 (05)