共 50 条
Dorronsoro's theorem in Heisenberg groups
被引:1
|作者:
Faessler, Katrin
[1
,2
]
Orponen, Tuomas
[3
]
机构:
[1] Univ Fribourg, Dept Math, Chemin Musee 23, CH-1700 Fribourg, Switzerland
[2] Univ Jyvaskyla, Dept Math & Stat, FI-40014 Jyvaskyla, Finland
[3] Univ Helsinki, Dept Math & Stat, FI-00014 Helsinki, Finland
基金:
芬兰科学院;
瑞士国家科学基金会;
关键词:
26B05 (primary);
26A33;
42B35 (secondary);
MAXIMAL FUNCTIONS;
SPACES;
D O I:
10.1112/blms.12341
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
A theorem of Dorronsoro from the 1980s quantifies the fact that real-valued Sobolev functions on Euclidean spaces can be approximated by affine functions almost everywhere, and at all sufficiently small scales. We prove a variant of Dorronsoro's theorem in Heisenberg groups: functions in horizontal Sobolev spaces can be approximated by affine functions which are independent of the last variable. As an application, we deduce new proofs for certain vertical versus horizontal Poincare inequalities for real-valued functions on the Heisenberg group, originally due to Austin-Naor-Tessera and Lafforgue-Naor.
引用
收藏
页码:472 / 488
页数:17
相关论文