Hall's theorem for limit groups

被引:43
|
作者
Wilton, Henry [1 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
基金
英国工程与自然科学研究理事会;
关键词
limit groups; subgroup separability;
D O I
10.1007/s00039-008-0657-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A celebrated theorem of Marshall Hall Jr. implies that finitely generated free groups are subgroup separable and that all of their finitely generated subgroups are retracts of finite-index subgroups. We use topological techniques inspired by the work of Stallings to prove that all limit groups share these two properties. This answers a question of Sela.
引用
收藏
页码:271 / 303
页数:33
相关论文
共 50 条
  • [1] Hall’s Theorem for Limit Groups
    Henry Wilton
    Geometric and Functional Analysis, 2008, 18 : 271 - 303
  • [2] Measurable Hall?s theorem for actions of abelian groups
    Ciesla, Tomasz
    Sabok, Marcin
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2022, 24 (08) : 2751 - 2773
  • [3] A Hall theorem for ω-stable groups
    Altinel, T
    Cherlin, G
    Corredor, LJ
    Nesin, A
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1998, 57 : 385 - 397
  • [4] THEOREM ON CENTRAL LIMIT OF NILPOTENT GROUPS
    RAUGI, A
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1978, 43 (02): : 149 - 172
  • [5] A limit theorem for discrete quantum groups
    Kalantar, Mehrdad
    JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (03) : 469 - 473
  • [6] CENTRAL LIMIT THEOREM FOR LINEAR GROUPS
    Benoist, Yves
    Quint, Jean-Francois
    ANNALS OF PROBABILITY, 2016, 44 (02): : 1308 - 1340
  • [7] Duality theorem for inductive limit groups
    Tatsuuma, Nobuhiko
    KYOTO JOURNAL OF MATHEMATICS, 2014, 54 (01) : 51 - 73
  • [8] CENTRAL LIMIT THEOREM ON NILPOTENT GROUPS
    CREPEL, P
    RAUGI, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 281 (15): : 605 - 608
  • [9] Central limit theorem on hyperbolic groups
    Benoist, Y.
    Quint, J. -F.
    IZVESTIYA MATHEMATICS, 2016, 80 (01) : 3 - 23
  • [10] Hall's theorem for hypergraphs
    Aharoni, R
    Haxell, P
    JOURNAL OF GRAPH THEORY, 2000, 35 (02) : 83 - 88