Hall's theorem for hypergraphs

被引:0
|
作者
Aharoni, R
Haxell, P [1 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
Hall's theorem; hypergraphs; Sperner's Lemma;
D O I
10.1002/1097-0118(200010)35:2<83::AID-JGT2>3.0.CO;2-V
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a hypergraph version of Hall's theorem. The proof is topological. (C) 2000 John Wiley & Sons, Inc. J Graph Theory 35: 83-88, 2000.
引用
收藏
页码:83 / 88
页数:6
相关论文
共 50 条
  • [1] Hall's and Konig's theorem in graphs and hypergraphs
    Beckenbach, Isabel
    Borndoerfer, Ralf
    DISCRETE MATHEMATICS, 2018, 341 (10) : 2753 - 2761
  • [2] A GENERALIZATION OF HALL'S THEOREM FOR k-UNIFORM k-PARTITE HYPERGRAPHS
    Jafarpour-Golzari, Reza
    TRANSACTIONS ON COMBINATORICS, 2019, 8 (03) : 23 - 28
  • [3] Mantel's theorem for random hypergraphs
    Balogh, Jozsef
    Butterfield, Jane
    Hu, Ping
    Lenz, John
    RANDOM STRUCTURES & ALGORITHMS, 2016, 48 (04) : 641 - 654
  • [4] The generalization of Dirac's theorem for hypergraphs
    Szemérdi, E
    Rucinski, A
    Rödl, V
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2005, PROCEEDINGS, 2005, 3618 : 52 - 56
  • [5] On the Konig-Hall-Egervary theorem for multidimensional matrices and multipartite hypergraphs
    Taranenko, A. A.
    DISCRETE MATHEMATICS, 2021, 344 (08)
  • [6] CHENG?S MAXIMAL DIAMETER THEOREM FOR HYPERGRAPHS
    Kitabeppu, Yu
    Matsumoto, Erina
    TOHOKU MATHEMATICAL JOURNAL, 2023, 75 (01) : 119 - 130
  • [7] Chromatic index of hypergraphs and Shannon's theorem
    Dvorák, T
    EUROPEAN JOURNAL OF COMBINATORICS, 2000, 21 (05) : 585 - 591
  • [8] The de Bruijn–Erdős theorem for hypergraphs
    Noga Alon
    Keith E. Mellinger
    Dhruv Mubayi
    Jacques Verstraëte
    Designs, Codes and Cryptography, 2012, 65 : 233 - 245
  • [9] An Extension of Hall's Theorem
    Iosef Pinelis
    Annals of Combinatorics, 2002, 6 (1) : 103 - 106
  • [10] Hall's theorem revisited
    Sun, ZW
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (10) : 3129 - 3131