Feedback Vertex Set Inspired Kernel for Chordal Vertex Deletion

被引:12
|
作者
Agrawal, Akanksha [1 ,6 ]
Lokshtanov, Daniel [2 ]
Misra, Pranabendu [2 ]
Saurabh, Saket [3 ,4 ]
Zehavi, Meirav [5 ]
机构
[1] Hungarian Acad Sci, Budapest, Hungary
[2] Univ Bergen, Inst Informat, Postboks 7803, N-5020 Bergen, Norway
[3] Inst Math Sci, CIT Campus, Chennai 600113, Tamil Nadu, India
[4] Univ Bergen, Bergen, Norway
[5] Ben Gurion Univ Negev, Dept Comp Sci, Beer Sheva, Israel
[6] MTA SZTAKI, POB 63, H-1518 Budapest, Hungary
基金
欧洲研究理事会;
关键词
Chordal vertex deletion; chordal graph; parameterized complexity; kernelization;
D O I
10.1145/3284356
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a graph G and a parameter k, the CHORDAL VERTEX DELETION (CVD) problem asks whether there exists a subset U subset of V(G) of size at most k that hits all induced cycles of size at least 4. The existence of a polynomial kernel for CVD was a well-known open problem in the field of Parameterized Complexity. Recently, Jansen and Pilipczuk resolved this question affirmatively by designing a polynomial kernel for CVD of size O(k(161)log(58)k) and asked whether one can design a kernel of size O(k(10)) [Jansen an Pilipczuk, SODA 2017]. While we do not completely resolve this question, we design a significantly smaller kernel of size O(k(12)log(10)k), inspired by the O(k(2))-size kernel for FEEDBACK VERTEX SET [Thomasse, TALC 2010]. Furthermore, we introduce the notion of the independence degree of a vertex, which is our main conceptual contribution.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Breaking the Barrier 2k for Subset Feedback Vertex Set in Chordal Graphs
    Bai, Tian
    Xiao, Mingyu
    arXiv, 2022,
  • [32] Feedback vertex set in hypercubes
    Focardi, R
    Luccio, FL
    Peleg, D
    INFORMATION PROCESSING LETTERS, 2000, 76 (1-2) : 1 - 5
  • [33] The undirected feedback vertex set problem has a poly(k) kernel
    Burrage, Kevin
    Estivill-Castro, Vladimir
    Fellows, Michael
    Langston, Michael
    Mac, Shev
    Rosamond, Frances
    PARAMETERIZED AND EXACT COMPUTATION, PROCEEDINGS, 2006, 4169 : 192 - 202
  • [34] Tight Bounds for Chordal/Interval Vertex Deletion Parameterized by Treewidth
    Wlodarczyk, Michal
    ALGORITHMICA, 2025,
  • [35] A POLYNOMIAL KERNEL FOR PROPER INTERVAL VERTEX DELETION
    Fomin, Fedor V.
    Saurabh, Saket
    Villanger, Yngve
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (04) : 1964 - 1976
  • [36] A Polynomial Kernel for PROPER INTERVAL VERTEX DELETION
    Fomin, Fedor V.
    Saurabh, Saket
    Villanger, Yngve
    ALGORITHMS - ESA 2012, 2012, 7501 : 467 - 478
  • [37] A Polynomial Kernel for Bipartite Permutation Vertex Deletion
    Jan Derbisz
    Lawqueen Kanesh
    Jayakrishnan Madathil
    Abhishek Sahu
    Saket Saurabh
    Shaily Verma
    Algorithmica, 2022, 84 : 3246 - 3275
  • [38] A Polynomial Kernel for Bipartite Permutation Vertex Deletion
    Derbisz, Jan
    Kanesh, Lawqueen
    Madathil, Jayakrishnan
    Sahu, Abhishek
    Saurabh, Saket
    Verma, Shaily
    ALGORITHMICA, 2022, 84 (11) : 3246 - 3275
  • [39] A New Linear Kernel for Undirected Planar Feedback Vertex Set: Smaller and Simpler
    Xiao, Mingyu
    ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, AAIM 2014, 2014, 8546 : 288 - 298
  • [40] Faster deterministic FEEDBACK VERTEX SET
    Kociumaka, Tomasz
    Pilipczuk, Marcin
    INFORMATION PROCESSING LETTERS, 2014, 114 (10) : 556 - 560