GAPS BETWEEN ZEROS OF DEDEKIND ZETA-FUNCTIONS OF QUADRATIC NUMBER FIELDS. II

被引:2
|
作者
Bui, H. M. [1 ]
Heap, Winston P. [2 ]
Turnage-Butterbaugh, Caroline L. [3 ]
机构
[1] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
[2] Norwegian Univ Sci & Technol, Dept Math Sci, NO-7491 Trondheim, Norway
[3] Duke Univ, Dept Math, Durham, NC 27708 USA
来源
QUARTERLY JOURNAL OF MATHEMATICS | 2016年 / 67卷 / 03期
关键词
RANDOM-MATRIX THEORY; CONSECUTIVE ZEROS;
D O I
10.1093/qmath/haw021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a quadratic number field and zeta K(s) be the associated Dedekind zeta-function. We show that there are infinitely many gaps between consecutive zeros of zeta K(s) on the critical line which are >2.866 times the average spacing.
引用
收藏
页码:467 / 481
页数:15
相关论文
共 50 条