Joint universality of Hurwitz zeta-functions and nontrivial zeros of the Riemann zeta-function. II

被引:0
|
作者
Renata Macaitienė
Darius Šiaučiūnas
机构
[1] Institute of Regional Development,
[2] Šiauliai Academy,undefined
[3] Vilnius University,undefined
来源
关键词
Hurwitz zeta-function; nontrivial zeros; Riemann zeta-function; space of analytic functions; universality; 11M06; 11M41;
D O I
暂无
中图分类号
学科分类号
摘要
Let 0 < γ1 < ⋯ ≤ γk ≤ ⋯ be the sequence of imaginary parts of nontrivial zeros of the Riemann zetafunction. In [R. Macaitienė and D. Šiaučiūnas, Joint universality of Hurwitz zeta-functions and nontrivial zeros of the Riemann zeta-function, Lith. Math. J., 59(1):81–95, 2019] a joint universality theorem on the approximation of analytic functions by shifts of the Hurwitz zeta-functions ζ(s + ihγk, α1), …, ζ(s + ihγk, αr) has been obtained. In the paper, we prove universality theorems for the compositions F(ζ(s + ihγk, α1), …, ζ(s + ihγk, αr)) for some classes of operators in the r-dimensional space of analytic functions.
引用
收藏
页码:382 / 390
页数:8
相关论文
共 50 条