Joint universality of Hurwitz zeta-functions and nontrivial zeros of the Riemann zeta-function

被引:0
|
作者
Renata Macaitienė
Darius Šiaučiūnas
机构
[1] Research Institute,Faculty of Business and Technologies
[2] Šiauliai University,Department of Computer Sciences
[3] Šiauliai State College,undefined
[4] Šiauliai University,undefined
来源
关键词
Hurwitz zeta-function; joint universality; Montgomery pair correlation conjecture; Riemann zeta-function; weak convergence; 11M06; 11M41;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that every collection of analytic functions (f1(s), . . . , fr(s)) defined on the right-hand side of the critical strip can be simultaneously approximated by shifts of Hurwitz zeta-functions (ζ(s + iγκh, α1),  … , ζ(s + iγκh, αr)), h > 0, where 0 < γ1 ≤ γ2 ≤ … are the imaginary parts of nontrivial zeros of the Riemann zeta-function ζ(s). We use the weak form of the Montgomery pair correlation conjecture and the linear independence over ℚ of the set {log(m + αj) : m ∈ ℕ0, j = 1,  … , r}.
引用
收藏
页码:81 / 95
页数:14
相关论文
共 50 条