Alteration of the corpus callosum in patients with Alzheimer's disease: Deep learning-based assessment

被引:11
|
作者
Kamal, Sadia [1 ]
Park, Ingyu [1 ]
Kim, Yeo Jin [2 ]
Kim, Yun Joong [3 ,4 ]
Lee, Unjoo [1 ]
机构
[1] Hallym Univ, Dept Elect Engn, Chunchon, South Korea
[2] Hallym Univ, Chuncheon Sacred Heart Hosp, Dept Neurol, Coll Med, Chunchon, South Korea
[3] Yonsei Univ, Dept Neurol, Coll Med, Seoul, South Korea
[4] Yonsei Univ Hlth Syst, Yongin Severance Hosp, Dept Neurol, Yongin, South Korea
来源
PLOS ONE | 2021年 / 16卷 / 12期
基金
新加坡国家研究基金会;
关键词
MILD COGNITIVE IMPAIRMENT; ATROPHY; MRI; SHAPE; AD; TRACTOGRAPHY; TOPOGRAPHY; OASIS; MCI;
D O I
10.1371/journal.pone.0259051
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background Several studies have reported changes in the corpus callosum (CC) in Alzheimer's disease. However, the involved region differed according to the study population and study group. Using deep learning technology, we ensured accurate analysis of the CC in Alzheimer's disease. Methods We used the Open Access Series of Imaging Studies (OASIS) dataset to investigate changes in the CC. The individuals were divided into three groups using the Clinical Dementia Rating (CDR); 94 normal controls (NC) were not demented (NC group, CDR = 0), 56 individuals had very mild dementia (VMD group, CDR = 0.5), and 17 individuals were defined as having mild and moderate dementia (MD group, CDR = 1 or 2). Deep learning technology using a convolutional neural network organized in a U-net architecture was used to segment the CC in the midsagittal plane. Total CC length and regional magnetic resonance imaging (MRI) measurements of the CC were made. Results The total CC length was negatively associated with cognitive function. (beta = -0.139, p = 0.022) Among MRI measurements of the CC, the height of the anterior third (beta = 0.038, p <0.0001) and width of the body (beta = 0.077, p = 0.001) and the height (beta = 0.065, p = 0.001) and area of the splenium (beta = 0.059, p = 0.027) were associated with cognitive function. To distinguish MD from NC and VMD, the receiver operating characteristic analyses of these MRI measurements showed areas under the curves of 0.65-0.74. (total CC length = 0.705, height of the anterior third = 0.735, width of the body = 0.714, height of the splenium = 0.703, area of the splenium = 0.649). Conclusions Among MRI measurements, total CC length, the height of the anterior third and width of the body, and the height and area of the splenium were associated with cognitive decline. They had fair diagnostic validity in distinguishing MD from NC and VMD.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Progression of Corpus Callosum Atrophy in Early Stage of Alzheimer's Disease: MRI Based Study
    Zhu, Minwei
    Gao, Wenpeng
    Wang, Xudong
    Shi, Chen
    Lin, Zhiguo
    ACADEMIC RADIOLOGY, 2012, 19 (05) : 512 - 517
  • [32] Transfer Learning-Based Ensemble of Deep Neural Architectures for Alzheimer's and Parkinson's Disease Classification
    Vimbi, Viswan
    Shaffi, Noushath
    Mahmud, Mufti
    Subramanian, Karthikeyan
    Hajamohideen, Faizal
    APPLIED INTELLIGENCE AND INFORMATICS, AII 2023, 2024, 2065 : 186 - 204
  • [33] Deep Learning-Based Classification and Voxel-Based Visualization of Frontotemporal Dementia and Alzheimer's Disease
    Hu, Jingjing
    Qing, Zhao
    Liu, Renyuan
    Zhang, Xin
    Lv, Pin
    Wang, Maoxue
    Wang, Yang
    He, Kelei
    Gao, Yang
    Zhang, Bing
    FRONTIERS IN NEUROSCIENCE, 2021, 14
  • [34] Deep Learning-Based Magnetic Resonance Image Segmentation and Classification for Alzheimer's Disease Diagnosis
    Manochandar, T.
    Diderot, P. Kumaraguru
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2023,
  • [35] Deep learning-based drug screening for the discovery of potential therapeutic agents for Alzheimer's disease
    Wu, Tong
    Lin, Ruimei
    Cui, Pengdi
    Yong, Jie
    Yu, Heshui
    Li, Zheng
    JOURNAL OF PHARMACEUTICAL ANALYSIS, 2024, 14 (10)
  • [36] Deep Learning-Based Feature Extraction with MRI Data in Neuroimaging Genetics for Alzheimer's Disease
    Chakraborty, Dipnil
    Zhuang, Zhong
    Xue, Haoran
    Fiecas, Mark B.
    Shen, Xiatong
    Pan, Wei
    GENES, 2023, 14 (03)
  • [37] Deep Learning-Based Magnetic Resonance Image Segmentation and Classification for Alzheimer's Disease Diagnosis
    Manochandar, T.
    Diderot, P. Kumaraguru
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2023,
  • [38] Deep Learning-based Classification of MRI Images for Early Detection and Staging of Alzheimer's Disease
    Kumar, Parvatham Niranjan
    Maguluri, Lakshmana Phaneendra
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (05) : 451 - 459
  • [39] Deep Learning-Based Prediction of Alzheimer's Disease Using Microarray Gene Expression Data
    Abdelwahab, Mahmoud M.
    Al-Karawi, Khamis A.
    Semary, Hatem E.
    Gulyaeva, Natalia V.
    BIOMEDICINES, 2023, 11 (12)
  • [40] Multimodal deep learning for Alzheimer's disease dementia assessment
    Qiu, Shangran
    Miller, Matthew, I
    Joshi, Prajakta S.
    Lee, Joyce C.
    Xue, Chonghua
    Ni, Yunruo
    Wang, Yuwei
    De Anda-Duran, Ileana
    Hwang, Phillip H.
    Cramer, Justin A.
    Dwyer, Brigid C.
    Hao, Honglin
    Kaku, Michelle C.
    Kedar, Sachin
    Lee, Peter H.
    Mian, Asim Z.
    Murman, Daniel L.
    O'Shea, Sarah
    Paul, Aaron B.
    Saint-Hilaire, Marie-Helene
    Sartor, E. Alton
    Saxena, Aneeta R.
    Shih, Ludy C.
    Small, Juan E.
    Smith, Maximilian J.
    Swaminathan, Arun
    Takahashi, Courtney E.
    Taraschenko, Olga
    You, Hui
    Yuan, Jing
    Zhou, Yan
    Zhu, Shuhan
    Alosco, Michael L.
    Mez, Jesse
    Stein, Thor D.
    Poston, Kathleen L.
    Au, Rhoda
    Kolachalama, Vijaya B.
    NATURE COMMUNICATIONS, 2022, 13 (01)