Local explicitly correlated second-order Moller-Plesset perturbation theory with pair natural orbitals

被引:84
|
作者
Tew, David P. [1 ]
Helmich, Benjamin [2 ]
Haettig, Christof [2 ]
机构
[1] Univ Bristol, Sch Chem, Bristol BS8 1TS, Avon, England
[2] Ruhr Univ Bochum, Lehrstuhl Theoret Chem, D-44780 Bochum, Germany
来源
JOURNAL OF CHEMICAL PHYSICS | 2011年 / 135卷 / 07期
关键词
perturbation theory; PNO calculations; CLUSTER CORRELATION ENERGIES; ZETA BASIS-SETS; TERMS; IMPLEMENTATION; APPROXIMATION; FORMULATION; RESOLUTION; IDENTITY; CUSP;
D O I
10.1063/1.3624370
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We explore using a pair natural orbital analysis of approximate first-order pair functions as means to truncate the space of both virtual and complementary auxiliary orbitals in the context of explicitly correlated F12 methods using localised occupied orbitals. We demonstrate that this offers an attractive procedure and that only 10-40 virtual orbitals per significant pair are required to obtain second-order valence correlation energies to within 1-2% of the basis set limit. Moreover, for this level of virtual truncation, only 10-40 complementary auxiliary orbitals per pair are required for an accurate resolution of the identity in the computation of the three-and four-electron integrals that arise in explicitly correlated methods. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3624370]
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Calculation of frequency-dependent polarizabilities and hyperpolarizabilities by the second-order Moller-Plesset perturbation theory
    Aiga, F
    Itoh, R
    CHEMICAL PHYSICS LETTERS, 1996, 251 (5-6) : 372 - 380
  • [42] Comparison of bis(alkylthio)carbenes by density functional and Second-order Moller-Plesset perturbation theory
    Rahmi, Keywan
    Kassaee, Mohammad Z.
    Khorshidvand, Neda
    JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, 2021, 34 (01)
  • [43] A Kinetic Energy Fitting Metric for Resolution of the Identity Second-Order Moller-Plesset Perturbation Theory
    Lambrecht, Daniel S.
    Brandhorst, Kai
    Miller, William H.
    McCurdy, C. William
    Head-Gordon, Martin
    JOURNAL OF PHYSICAL CHEMISTRY A, 2011, 115 (13): : 2794 - 2801
  • [44] MP2[V] - A Simple Approximation to Second-Order Moller-Plesset Perturbation Theory
    Deng, Jia
    Gilbert, Andrew T. B.
    Gill, Peter M. W.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2015, 11 (04) : 1639 - 1644
  • [45] Analytic energy gradients for the orbital-optimized second-order Moller-Plesset perturbation theory
    Bozkaya, Ugur
    Sherrill, C. David
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (18):
  • [46] A local second-order Moller-Plesset method with localized orbitals: A parallelized efficient electron correlation method
    Nakao, Y
    Hirao, K
    JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (14): : 6375 - 6380
  • [47] Density fitting in second-order linear-r12 Moller-Plesset perturbation theory
    Manby, FR
    JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (09): : 4607 - 4613
  • [48] Tensor Hypercontraction Second-Order Moller-Plesset Perturbation Theory: Grid Optimization and Reaction Energies
    Schumacher, Sara I. L. Kokkila
    Hohenstein, Edward G.
    Parrish, Robert M.
    Wang, Lee-Ping
    Martinez, Todd J.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2015, 11 (07) : 3042 - 3052
  • [49] Magnetizability and rotational g tensors for density fitted local second-order Moller-Plesset perturbation theory using gauge-including atomic orbitals
    Loibl, Stefan
    Schuetz, Martin
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (02):
  • [50] An approximate second-order Moller-Plesset perturbation approach for large molecular calculations
    Nakajima, Takahito
    Hirao, Kimihiko
    CHEMICAL PHYSICS LETTERS, 2006, 427 (1-3) : 225 - 229