Local explicitly correlated second-order Moller-Plesset perturbation theory with pair natural orbitals

被引:84
|
作者
Tew, David P. [1 ]
Helmich, Benjamin [2 ]
Haettig, Christof [2 ]
机构
[1] Univ Bristol, Sch Chem, Bristol BS8 1TS, Avon, England
[2] Ruhr Univ Bochum, Lehrstuhl Theoret Chem, D-44780 Bochum, Germany
来源
JOURNAL OF CHEMICAL PHYSICS | 2011年 / 135卷 / 07期
关键词
perturbation theory; PNO calculations; CLUSTER CORRELATION ENERGIES; ZETA BASIS-SETS; TERMS; IMPLEMENTATION; APPROXIMATION; FORMULATION; RESOLUTION; IDENTITY; CUSP;
D O I
10.1063/1.3624370
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We explore using a pair natural orbital analysis of approximate first-order pair functions as means to truncate the space of both virtual and complementary auxiliary orbitals in the context of explicitly correlated F12 methods using localised occupied orbitals. We demonstrate that this offers an attractive procedure and that only 10-40 virtual orbitals per significant pair are required to obtain second-order valence correlation energies to within 1-2% of the basis set limit. Moreover, for this level of virtual truncation, only 10-40 complementary auxiliary orbitals per pair are required for an accurate resolution of the identity in the computation of the three-and four-electron integrals that arise in explicitly correlated methods. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3624370]
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Explicitly correlated calculation of the second-order Moller-Plesset correlation energies of Zn2+ and Zn
    Villani, C
    Klopper, W
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2005, 38 (14) : 2555 - 2567
  • [32] Analytical energy gradients in second-order Moller-Plesset perturbation theory for extended systems
    Hirata, S
    Iwata, S
    JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (11): : 4147 - 4155
  • [33] General biorthogonal projected bases as applied to second-order Moller-Plesset perturbation theory
    Weijo, Ville
    Manninen, Pekka
    Jorgensen, Poul
    Christiansen, Ove
    Olsen, Jeppe
    JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (07):
  • [34] Second Order Local Moller-Plesset Perturbation Theory for Periodic Systems: the CRYSCOR Code
    Usvyat, Denis
    Maschio, Lorenzo
    Pisani, Cesare
    Schuetz, Martin
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2010, 224 (3-4): : 441 - 454
  • [35] Optimised Thouless expansion second-order MOller-Plesset theory
    Simunek, Jan
    Noga, Jozef
    MOLECULAR PHYSICS, 2013, 111 (9-11) : 1119 - 1128
  • [36] Analytical energy gradients for local second-order Moller-Plesset perturbation theory using density fitting approximations
    Schütz, M
    Werner, HJ
    Lindh, R
    Manby, FR
    JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (02): : 737 - 750
  • [37] Local second-order Moller-Plesset perturbation theory: Investigation of complete basis set limits and domain choice
    Jorgensen, Kameron R.
    Wilson, Angela K.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [38] Analytic Calculation of First-order Molecular Properties at the Explicitly-correlated Second-order Moller-Plesset Level
    Hoefener, Sebastian
    Haettig, Christof
    Klopper, Wim
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2010, 224 (3-4): : 695 - 708
  • [39] A parallel second-order Moller-Plesset gradient
    Fletcher, GD
    Rendell, AP
    Sherwood, P
    MOLECULAR PHYSICS, 1997, 91 (03) : 431 - 438
  • [40] Direct determination of optimal pair-natural orbitals in a real-space representation: The second-order Moller-Plesset energy
    Kottmann, Jakob S.
    Bischoff, Florian A.
    Valeev, Edward F.
    JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (07):