Design of Experiments for Model Discrimination Hybridising Analytical and Data-Driven Approaches

被引:0
|
作者
Olofsson, Simon [1 ]
Deisenroth, Marc Peter [1 ,2 ]
Misener, Ruth [1 ]
机构
[1] Imperial Coll London, Dept Comp, London, England
[2] PROWLER Io, Cambridge, England
基金
英国工程与自然科学研究理事会;
关键词
BAYESIAN EXPERIMENTAL-DESIGN;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Healthcare companies must submit pharmaceutical drugs or medical devices to regulatory bodies before marketing new technology. Regulatory bodies frequently require transparent and interpretable computational modelling to justify a new healthcare technology, but researchers may have several competing models for a biological system and too little data to discriminate between the models. In design of experiments for model discrimination, the goal is to design maximally informative physical experiments in order to discriminate between rival predictive models. Prior work has focused either on analytical approaches, which cannot manage all functions, or on data-driven approaches, which may have computational difficulties or lack interpretable marginal predictive distributions. We develop a methodology introducing Gaussian process surrogates in lieu of the original mechanistic models. We thereby extend existing design and model discrimination methods developed for analytical models to cases of non-analytical models in a computationally efficient manner.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Two approaches to data-driven design of evolving fuzzy systems: eTS and FLEXFIS
    Angelov, P
    Lughofer, E
    Klement, EP
    NAFIPS 2005 - 2005 Annual Meeting of the North American Fuzzy Information Processing Society, 2005, : 31 - 36
  • [42] A data-driven hysteresis model
    Ikhouane, Faycal
    STRUCTURAL CONTROL & HEALTH MONITORING, 2022, 29 (09):
  • [43] Data-driven approaches in the investigation of social perception
    Adolphs, Ralph
    Nunnmenmaa, Lauri
    Todorov, Alexander
    Haxby, James V.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2016, 371 (1693)
  • [44] A Comparison of Data-Driven and Model-Driven Approaches to Brightness Temperature Diurnal Cycle Interpolation
    van den Bergh, F.
    van Wyk, M. A.
    van Wyk, B. J.
    Udahemuka, G.
    SAIEE AFRICA RESEARCH JOURNAL, 2007, 98 (03): : 81 - 86
  • [45] MD3Net: Integrating Model-Driven and Data-Driven Approaches for Pansharpening
    Yan, Yinsong
    Liu, Junmin
    Xu, Shuang
    Wang, Yicheng
    Cao, Xiangyong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [46] DATA-DRIVEN APPROACHES TO LEARN HYCHEM MODELS
    Ji, Weiqi
    Zanders, Julian
    Park, Ji-Woong
    Deng, Sili
    PROCEEDINGS OF ASME 2021 INTERNAL COMBUSTION ENGINE DIVISION FALL TECHNICAL CONFERENCE (ICEF2021), 2021,
  • [47] Robust and data-driven approaches to call centers
    Bertsimas, Dimitris
    Doan, Xuan Vinh
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 207 (02) : 1072 - 1085
  • [48] A data-driven reflectance model
    Matusik, W
    Pfister, H
    Brand, M
    McMillan, L
    ACM TRANSACTIONS ON GRAPHICS, 2003, 22 (03): : 759 - 769
  • [49] Theoretical and Data-Driven Approaches for Biomolecular Condensates
    Saar, Kadi L.
    Qian, Daoyuan
    Good, Lydia L.
    Morgunov, Alexey S.
    Collepardo-Guevara, Rosana
    Best, Robert B.
    Knowles, Tuomas P. J.
    CHEMICAL REVIEWS, 2023, 123 (14) : 8988 - 9009
  • [50] Combining Data-Driven and Model-Driven Approaches for Optimal Distributed Control of Standalone Microgrid
    Ahangar, Parvaiz Ahmad
    Lone, Shameem Ahmad
    Gupta, Neeraj
    SUSTAINABILITY, 2023, 15 (16)