Theoretical and Data-Driven Approaches for Biomolecular Condensates

被引:9
|
作者
Saar, Kadi L. [1 ,2 ]
Qian, Daoyuan [1 ]
Good, Lydia L. [1 ,3 ]
Morgunov, Alexey S. [1 ]
Collepardo-Guevara, Rosana [1 ,4 ]
Best, Robert B. [3 ]
Knowles, Tuomas P. J. [1 ,5 ]
机构
[1] Univ Cambridge, Yusuf Hamied Dept Chem, Cambridge CB2 1EW, England
[2] Transit Bio Ltd, Cambridge, England
[3] Natl Inst Diabet & Digest & Kidney Dis, Lab Chem Phys, Natl Inst Hlth, Bethesda, MD 20892 USA
[4] Univ Cambridge, Dept Genet, Cambridge CB2 3EH, England
[5] Univ Cambridge, Dept Phys, Cavendish Lab, Cambridge CB3 0HE, England
基金
美国国家卫生研究院; 欧洲研究理事会;
关键词
LIQUID-PHASE-SEPARATION; COARSE-GRAINED MODEL; MARTINI FORCE-FIELD; DISORDERED PROTEINS; IRREVERSIBLE-PROCESSES; COMPLEX COACERVATION; RECIPROCAL RELATIONS; STRESS GRANULE; FREE-ENERGY; SEQUENCE;
D O I
10.1021/acs.chemrev.2c00586
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biomolecular condensation processes are increasinglyrecognizedas a fundamental mechanism that living cells use to organize biomoleculesin time and space. These processes can lead to the formation of membranelessorganelles that enable cells to perform distinct biochemical processesin controlled local environments, thereby supplying them with an additionaldegree of spatial control relative to that achieved by membrane-boundorganelles. This fundamental importance of biomolecular condensationhas motivated a quest to discover and understand the molecular mechanismsand determinants that drive and control this process. Within thismolecular viewpoint, computational methods can provide a unique angleto studying biomolecular condensation processes by contributing theresolution and scale that are challenging to reach with experimentaltechniques alone. In this Review, we focus on three types of dry-lab approaches: theoretical methods, physics-drivensimulations and data-driven machine learning methods. We review recentprogress in using these tools for probing biomolecular condensationacross all three fields and outline the key advantages and limitationsof each of the approaches. We further discuss some of the key outstandingchallenges that we foresee the community addressing next in orderto develop a more complete picture of the molecular driving forcesbehind biomolecular condensation processes and their biological rolesin health and disease.
引用
收藏
页码:8988 / 9009
页数:22
相关论文
共 50 条
  • [1] Data-driven docking for the study of biomolecular complexes
    van Dijk, ADJ
    Boelens, R
    Bonvin, AMJJ
    FEBS JOURNAL, 2005, 272 (02) : 293 - 312
  • [2] Theoretical and data-driven approaches to semiconductors and dielectrics: from prediction to experiment
    Oba, Fumiyasu
    Nagai, Takayuki
    Katsube, Ryoji
    Mochizuki, Yasuhide
    Tsuji, Masatake
    Deffrennes, Guillaume
    Hanzawa, Kota
    Nakano, Akitoshi
    Takahashi, Akira
    Terayama, Kei
    Tamura, Ryo
    Hiramatsu, Hidenori
    Nose, Yoshitaro
    Taniguchi, Hiroki
    Science and Technology of Advanced Materials, 2024, 25 (01)
  • [3] The HADDOCK web server for data-driven biomolecular docking
    Sjoerd J de Vries
    Marc van Dijk
    Alexandre M J J Bonvin
    Nature Protocols, 2010, 5 : 883 - 897
  • [4] The HADDOCK web server for data-driven biomolecular docking
    De Vries, Sjoerd J.
    van Dijk, Marc
    Bonvin, Alexandre M. J. J.
    NATURE PROTOCOLS, 2010, 5 (05) : 883 - 897
  • [5] Data-driven docking for the study of biomolecular complexes.
    Bonvin, AM
    FEBS JOURNAL, 2005, 272 : 249 - 249
  • [6] Data-driven coarse graining of large biomolecular structures
    Chen, Yi-Ling
    Habeck, Michael
    PLOS ONE, 2017, 12 (08):
  • [7] Combining Theoretical and Data-Driven Approaches To Predict Drug Substance Hydrate Formation
    Tilbury, Carl J.
    Chen, Jie
    Mattei, Alessandra
    Chen, Shuang
    Sheikh, Ahmad Y.
    CRYSTAL GROWTH & DESIGN, 2018, 18 (01) : 57 - 67
  • [8] Data-driven systems biology approaches
    Chen, Luonan
    JOURNAL OF MOLECULAR CELL BIOLOGY, 2017, 9 (06) : 435 - 435
  • [9] Data-driven approaches in FinTech: a survey
    Tian, Xin
    He, Jing Selena
    Han, Meng
    INFORMATION DISCOVERY AND DELIVERY, 2021, 49 (02) : 123 - 135
  • [10] Data-driven Approaches to Edge Caching
    Li, Guangyu
    Shen, Qiang
    Liu, Yong
    Cao, Houwei
    Han, Zifa
    Li, Feng
    Li, Jin
    PROCEEDINGS OF THE 2018 WORKSHOP ON NETWORKING FOR EMERGING APPLICATIONS AND TECHNOLOGIES (NEAT '18), 2018, : 8 - 14