Shape control of a multi-agent system using tensegrity structures

被引:4
|
作者
Nabet, Benjamin [1 ]
Leonard, Naomi Ehrich [1 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
关键词
D O I
10.1007/978-3-540-73890-9_26
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a new coordinated control law for a group of vehicles in the plane that stabilizes an arbitrary desired group shape. The control law is derived for an arbitrary shape using models of tensegrity structures which are spatial networks of interconnected struts and cables. The symmetries in the coupled system and the energy-momentum method are used to investigate stability of relative equilibria corresponding to steady translations of the prescribed rigid shape.
引用
收藏
页码:329 / +
页数:3
相关论文
共 50 条
  • [31] Multi-Agent Based Control of a Heterogeneous System
    Li, Howard
    Karray, Fakhreddine
    Basir, Otman
    Song, Insop
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2006, 10 (02) : 161 - 167
  • [32] MARCS -: Multi-agent railway control system
    Proença, H
    Oliveira, E
    ADVANCES IN ARTIFICIAL INTELLIGENCE - IBERAMIA 2004, 2004, 3315 : 12 - 21
  • [33] Survey on the Formation Control of Multi-Agent System
    Hu Zhi-wei
    Liang Jia-hong
    Chen Ling
    Wu Bing
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 6092 - 6098
  • [34] Multi-agent neural business control system
    Lourdes Borrajo, M.
    Corchado, Juan M.
    Corchado, Emilio S.
    Pellicer, Maria A.
    Bajo, Javier
    INFORMATION SCIENCES, 2010, 180 (06) : 911 - 927
  • [35] Multi-Agent Technology for Power System Control
    Roche, Robin
    Lauri, Fabrice
    Blunier, Benjamin
    Miraoui, Abdellatif
    Koukam, Abderrafìâa
    Green Energy and Technology, 2013, 59 : 567 - 602
  • [36] Cooperative multi-agent system for production control using reinforcement learning
    Dittrich, Marc-Andre
    Fohlmeister, Silas
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2020, 69 (01) : 389 - 392
  • [37] Multi-agent behavioral control system using deep reinforcement learning
    Ngoc Duy Nguyen
    Thanh Nguyen
    Nahavandi, Saeid
    NEUROCOMPUTING, 2019, 359 : 58 - 68
  • [38] Control of star fish robot using multi-agent programming system
    Hondo, N
    Nishikawa, K
    Yokoi, H
    Kakazu, Y
    INTELLIGENT AUTONOMOUS SYSTEMS: IAS-5, 1998, : 595 - 601
  • [39] A brief review on computer system control using multi-agent technique
    Ali, Fahad
    Iqbal, Ayesha
    Nazir, Zunaira
    Inayat, Usman
    Ali, Syed Mohsin
    Saleem, Muhammad Rehan
    INTERNATIONAL JOURNAL OF SUSTAINABLE AVIATION, 2019, 5 (04) : 298 - 312
  • [40] USING QUALITY COSTS IN A MULTI-AGENT SYSTEM FOR AN AIRLINE OPERATIONS CONTROL
    Castro, Antonio J. M.
    Oliveira, Eugenio
    ICEIS 2009 : PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS, VOL AIDSS, 2009, : 19 - 24