Low-Rank and Sparse Structure Pursuit via Alternating Minimization

被引:0
|
作者
Gu, Quanquan [1 ]
Wang, Zhaoran [2 ]
Liu, Han [2 ]
机构
[1] Univ Virginia, Dept Syst & Informat Engn, Charlottesville, VA 22903 USA
[2] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
来源
ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51 | 2016年 / 51卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a nonconvex alternating minimization optimization algorithm for low-rank and sparse structure pursuit. Compared with convex relaxation based methods, the proposed algorithm is computationally more efficient for large scale problems. In our study, we define a notion of bounded difference of gradients, based on which we rigorously prove that with suitable initialization, the proposed nonconvex optimization algorithm enjoys linear convergence to the global optima and exactly recovers the underlying low rank and sparse matrices under standard conditions such as incoherence and sparsity conditions. For a wide range of statistical models such as multi-task learning and robust principal component analysis (RPCA), our algorithm provides a principled approach to learning the low rank and sparse structures with provable guarantee. Thorough experiments on both synthetic and real datasets backup our theory.
引用
收藏
页码:600 / 609
页数:10
相关论文
共 50 条
  • [21] Unsupervised Video Matting via Sparse and Low-Rank Representation
    Zou, Dongqing
    Chen, Xiaowu
    Cao, Guangying
    Wang, Xiaogang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (06) : 1501 - 1514
  • [22] Sparse and Low-Rank Tensor Estimation via Cubic Sketchings
    Hao, Botao
    Zhang, Anru
    Cheng, Guang
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (09) : 5927 - 5964
  • [23] Hyperspectral Unmixing Via Nonconvex Sparse and Low-Rank Constraint
    Han, Hongwei
    Wang, Guxi
    Wang, Maozhi
    Miao, Jiaqing
    Guo, Si
    Chen, Ling
    Zhang, Mingyue
    Guo, Ke
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 5704 - 5718
  • [24] Low-Rank/Sparse-Inverse Decomposition via Woodbury
    Fuentes, Victor K.
    Lee, Jon
    OPERATIONS RESEARCH PROCEEDINGS 2016, 2018, : 111 - 117
  • [25] Speech Denoising via Low-Rank and Sparse Matrix Decomposition
    Huang, Jianjun
    Zhang, Xiongwei
    Zhang, Yafei
    Zou, Xia
    Zeng, Li
    ETRI JOURNAL, 2014, 36 (01) : 167 - 170
  • [26] Sparse and Low-rank Tensor Estimation via Cubic Sketchings
    Hao, Botao
    Zhang, Anru
    Cheng, Guang
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 1319 - 1329
  • [27] Tensor Completion Via Collaborative Sparse and Low-Rank Transforms
    Li, Ben-Zheng
    Zhao, Xi-Le
    Wang, Jian-Li
    Chen, Yong
    Jiang, Tai-Xiang
    Liu, Jun
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2021, 7 : 1289 - 1303
  • [28] VIDEO DETECTION ANOMALY VIA LOW-RANK AND SPARSE DECOMPOSITIONS
    Lam Tran
    Navasca, Carmeliza
    Luo, Jiebo
    2012 WESTERN NEW YORK IMAGE PROCESSING WORKSHOP (WNYIPW), 2012, : 17 - 20
  • [29] Video Object Segmentation Via Low-Rank Sparse Representation
    Gu S.
    Ma Z.
    Xie M.
    1600, Univ. of Electronic Science and Technology of China (46): : 363 - 368and406
  • [30] GRAPH REFINEMENT VIA SIMULTANEOUSLY LOW-RANK AND SPARSE APPROXIMATION
    Zhang, Zhenyue
    Zhai, Zheng
    Li, Limin
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (03): : A1525 - A1553