Sparse and Low-rank Tensor Estimation via Cubic Sketchings

被引:0
|
作者
Hao, Botao [1 ]
Zhang, Anru [2 ]
Cheng, Guang [3 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] Univ Wisconsin, Madison, WI USA
[3] Purdue Univ, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
OPTIMAL RATES; CONVERGENCE; REGRESSION; RECOVERY; NORM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a general framework for sparse and low-rank tensor estimation from cubic sketchings. A two-stage non-convex implementation is developed based on sparse tensor decomposition and thresholded gradient descent, which ensures exact recovery in the noiseless case and stable recovery in the noisy case with high probability. The non-asymptotic analysis sheds light on an interplay between optimization error and statistical error. The proposed procedure is shown to be rate-optimal under certain conditions. As a technical by-product, novel high-order concentration inequalities are derived for studying high-moment sub-Gaussian tensors. An interesting tensor formulation illustrates the potential application to high-order interaction pursuit in high-dimensional linear regression.
引用
收藏
页码:1319 / 1329
页数:11
相关论文
共 50 条
  • [1] Sparse and Low-Rank Tensor Estimation via Cubic Sketchings
    Hao, Botao
    Zhang, Anru
    Cheng, Guang
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (09) : 5927 - 5964
  • [2] Robust Low-Rank and Sparse Tensor Decomposition for Low-Rank Tensor Completion
    Shi, Yuqing
    Du, Shiqiang
    Wang, Weilan
    [J]. PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 7138 - 7143
  • [3] Tensor Completion Via Collaborative Sparse and Low-Rank Transforms
    Li, Ben-Zheng
    Zhao, Xi-Le
    Wang, Jian-Li
    Chen, Yong
    Jiang, Tai-Xiang
    Liu, Jun
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2021, 7 : 1289 - 1303
  • [4] Sparse and Low-Rank Tensor Decomposition
    Shah, Parikshit
    Rao, Nikhil
    Tang, Gongguo
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [5] Hyperspectral Superresolution Reconstruction via Decomposition of Low-Rank and Sparse Tensor
    Wu, Huajing
    Zhang, Kefei
    Wu, Suqin
    Zhang, Minghao
    Shi, Shuangshuang
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 8943 - 8957
  • [6] Boosted Sparse and Low-Rank Tensor Regression
    He, Lifang
    Chen, Kun
    Xu, Wanwan
    Zhou, Jiayu
    Wang, Fei
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [7] Tensor low-rank sparse representation for tensor subspace learning
    Du, Shiqiang
    Shi, Yuqing
    Shan, Guangrong
    Wang, Weilan
    Ma, Yide
    [J]. NEUROCOMPUTING, 2021, 440 : 351 - 364
  • [8] Generalized Low-Rank Plus Sparse Tensor Estimation by Fast Riemannian Optimization
    Cai, Jian-Feng
    Li, Jingyang
    Xia, Dong
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (544) : 2588 - 2604
  • [9] Tensor low-rank and sparse light field photography
    Kamal, Mandad Hosseini
    Heshmat, Barmak
    Raskar, Ramesh
    Vandergheynst, Pierre
    Wetzstein, Gordon
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2016, 145 : 172 - 181
  • [10] Sparse and Low-Rank Covariance Matrix Estimation
    Zhou S.-L.
    Xiu N.-H.
    Luo Z.-Y.
    Kong L.-C.
    [J]. Journal of the Operations Research Society of China, 2015, 3 (2) : 231 - 250