DNA methylation-based prediction of response to immune checkpoint inhibition in metastatic melanoma

被引:32
|
作者
Filipski, Katharina [1 ,2 ,3 ]
Scherer, Michael [4 ,5 ,6 ]
Zeiner, Kim N. [7 ]
Bucher, Andreas [8 ]
Kleemann, Johannes [7 ]
Jurmeister, Philipp [9 ,10 ,11 ,12 ,13 ]
Hartung, Tabea, I [1 ]
Meissner, Markus [7 ]
Plate, Karl H. [1 ,2 ,3 ]
Fenton, Tim R. [14 ]
Walter, Jorn [4 ]
Tierling, Sascha [4 ]
Schilling, Bastian [15 ]
Zeiner, Pia S. [2 ,3 ,16 ]
Harter, Patrick N. [1 ,2 ,3 ]
机构
[1] Univ Hosp, Neurol Inst, Edinger Inst, Frankfurt, Germany
[2] German Canc Res Ctr, German Canc Consortium DKTK Heidelberg, Heidelberg, Germany
[3] Frankfurt Canc Inst FCI, Frankfurt, Germany
[4] Univ Saarland, Dept Genet, Saarbrucken, Germany
[5] Max Planck Inst Informat, Saarland Informat Campus, Saarbrucken, Germany
[6] Grad Sch Comp Sci, Saarland Informat Campus, Saarbrucken, Germany
[7] Univ Hosp, Dept Dermatol, Frankfurt, Germany
[8] Univ Hosp, Dept Radiol, Frankfurt, Germany
[9] Charite Univ Med Berlin, Inst Pathol, Berlin, Germany
[10] Free Univ Berlin, Berlin, Germany
[11] Humboldt Univ, Berlin, Germany
[12] Berlin Inst Hlth, Berlin, Germany
[13] Ludwig Maximilians Univ Hosp Munich, Inst Pathol, Munich, Germany
[14] Univ Kent, Sch Biosci, Canterbury, Kent, England
[15] Univ Hosp Wurzburg, Dept Dermatol, Wurzburg, Germany
[16] Univ Hosp, Dr Senckenberg Inst Neurooncol, Frankfurt, Germany
基金
欧盟地平线“2020”;
关键词
biostatistics; immunotherapy; melanoma; tumor biomarkers; biomarkers; tumor; SURVIVAL; IPILIMUMAB; PEMBROLIZUMAB; NIVOLUMAB; IMMUNOTHERAPY; EXPRESSION; OUTCOMES;
D O I
10.1136/jitc-2020-002226
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Therapies based on targeting immune checkpoints have revolutionized the treatment of metastatic melanoma in recent years. Still, biomarkers predicting long-term therapy responses are lacking. Methods A novel approach of reference-free deconvolution of large-scale DNA methylation data enabled us to develop a machine learning classifier based on CpG sites, specific for latent methylation components (LMC), that allowed for patient allocation to prognostic clusters. DNA methylation data were processed using reference-free analyses (MeDeCom) and reference-based computational tumor deconvolution (MethylCIBERSORT, LUMP). Results We provide evidence that DNA methylation signatures of tumor tissue from cutaneous metastases are predictive for therapy response to immune checkpoint inhibition in patients with stage IV metastatic melanoma. Conclusions These results demonstrate that LMC-based segregation of large-scale DNA methylation data is a promising tool for classifier development and treatment response estimation in cancer patients under targeted immunotherapy.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Adaptive feature selection framework for DNA methylation-based age prediction
    Zahra Momeni
    Mohammad Saniee Abadeh
    Soft Computing, 2022, 26 : 3777 - 3788
  • [32] DNA methylation-based subtype prediction for pediatric acute lymphoblastic leukemia
    Nordlund, Jessica
    Backlin, Christofer L.
    Zachariadis, Vasilios
    Cavelier, Lucia
    Dahlberg, Johan
    Ofverholm, Ingegerd
    Barbany, Gisela
    Nordgren, Ann
    Overnas, Elin
    Abrahamsson, Jonas
    Flaegstad, Trond
    Heyman, Mats M.
    Jonsson, Olafur G.
    Kanerva, Jukka
    Larsson, Rolf
    Palle, Josefine
    Schmiegelow, Kjeld
    Gustafsson, Mats G.
    Lonnerholm, Gudmar
    Forestier, Erik
    Syvanen, Ann-Christine
    CLINICAL EPIGENETICS, 2015, 7
  • [33] Adaptive feature selection framework for DNA methylation-based age prediction
    Momeni, Zahra
    Abadeh, Mohammad Saniee
    SOFT COMPUTING, 2022, 26 (08) : 3777 - 3788
  • [34] DNA methylation-based subtype prediction for pediatric acute lymphoblastic leukemia
    Jessica Nordlund
    Christofer L Bäcklin
    Vasilios Zachariadis
    Lucia Cavelier
    Johan Dahlberg
    Ingegerd Öfverholm
    Gisela Barbany
    Ann Nordgren
    Elin Övernäs
    Jonas Abrahamsson
    Trond Flaegstad
    Mats M Heyman
    Ólafur G Jónsson
    Jukka Kanerva
    Rolf Larsson
    Josefine Palle
    Kjeld Schmiegelow
    Mats G Gustafsson
    Gudmar Lönnerholm
    Erik Forestier
    Ann-Christine Syvänen
    Clinical Epigenetics, 2015, 7
  • [35] Analysis of DNA methylation patterns in the tumor immune microenvironment of metastatic melanoma
    Mitra, Shamik
    Lauss, Martin
    Cabrita, Rita
    Choi, Jiyeon
    Zhang, Tongwu
    Isaksson, Karolin
    Olsson, Hakan
    Ingvar, Christian
    Carneiro, Ana
    Staaf, Johan
    Ringner, Markus
    Nielsen, Kari
    Brown, Kevin M.
    Jonsson, Goran
    MOLECULAR ONCOLOGY, 2020, 14 (05) : 933 - 950
  • [36] Prognostic Hematologic Biomarkers Following Immune Checkpoint Inhibition in Metastatic Uveal Melanoma
    Waninger, Jessica J. J.
    Fecher, Leslie A. A.
    Lao, Christopher
    Yentz, Sarah
    Green, Michael D. D.
    Demirci, Hakan
    CANCERS, 2022, 14 (23)
  • [37] Cutaneous autoimmune effects in the setting of therapeutic immune checkpoint inhibition for metastatic melanoma
    Mochel, Mark C.
    Ming, Michael E.
    Imadojemu, Sotonye
    Gangadhar, Tara C.
    Schuchter, Lynn M.
    Elenitsas, Rosalie
    Payne, Aimee S.
    Chu, Emily Y.
    JOURNAL OF CUTANEOUS PATHOLOGY, 2016, 43 (09) : 787 - 791
  • [38] Immune Toxicity with Checkpoint Inhibition for Metastatic Melanoma: Case Series and Clinical Management
    Lomax, Anna J.
    Lim, Jennifer
    Cheng, Robert
    Sweeting, Arianne
    Lowe, Patricia
    McGill, Neil
    Shackel, Nicholas
    Chua, Elizabeth L.
    McNeil, Catriona
    JOURNAL OF SKIN CANCER, 2018, 2018
  • [39] LDH Isotyping for Checkpoint Inhibitor Response Prediction in Patients with Metastatic Melanoma
    van Wilpe, Sandra
    Tolmeijer, Sofie H.
    de Vries, I. Jolanda M.
    Koornstra, Rutger H. T.
    Mehra, Niven
    IMMUNO, 2021, 1 (02): : 67 - 77
  • [40] Prediction of Early Response to Immune Checkpoint Inhibition Using FDG-PET/CT in Melanoma Patients
    Kudura, Ken
    Dimitriou, Florentia
    Basler, Lucas
    Forster, Robert
    Mihic-Probst, Daniela
    Kutzker, Tim
    Dummer, Reinhard
    Mangana, Joanna
    Burger, Irene A.
    Kreissl, Michael C.
    CANCERS, 2021, 13 (15)