DNA methylation-based prediction of response to immune checkpoint inhibition in metastatic melanoma

被引:32
|
作者
Filipski, Katharina [1 ,2 ,3 ]
Scherer, Michael [4 ,5 ,6 ]
Zeiner, Kim N. [7 ]
Bucher, Andreas [8 ]
Kleemann, Johannes [7 ]
Jurmeister, Philipp [9 ,10 ,11 ,12 ,13 ]
Hartung, Tabea, I [1 ]
Meissner, Markus [7 ]
Plate, Karl H. [1 ,2 ,3 ]
Fenton, Tim R. [14 ]
Walter, Jorn [4 ]
Tierling, Sascha [4 ]
Schilling, Bastian [15 ]
Zeiner, Pia S. [2 ,3 ,16 ]
Harter, Patrick N. [1 ,2 ,3 ]
机构
[1] Univ Hosp, Neurol Inst, Edinger Inst, Frankfurt, Germany
[2] German Canc Res Ctr, German Canc Consortium DKTK Heidelberg, Heidelberg, Germany
[3] Frankfurt Canc Inst FCI, Frankfurt, Germany
[4] Univ Saarland, Dept Genet, Saarbrucken, Germany
[5] Max Planck Inst Informat, Saarland Informat Campus, Saarbrucken, Germany
[6] Grad Sch Comp Sci, Saarland Informat Campus, Saarbrucken, Germany
[7] Univ Hosp, Dept Dermatol, Frankfurt, Germany
[8] Univ Hosp, Dept Radiol, Frankfurt, Germany
[9] Charite Univ Med Berlin, Inst Pathol, Berlin, Germany
[10] Free Univ Berlin, Berlin, Germany
[11] Humboldt Univ, Berlin, Germany
[12] Berlin Inst Hlth, Berlin, Germany
[13] Ludwig Maximilians Univ Hosp Munich, Inst Pathol, Munich, Germany
[14] Univ Kent, Sch Biosci, Canterbury, Kent, England
[15] Univ Hosp Wurzburg, Dept Dermatol, Wurzburg, Germany
[16] Univ Hosp, Dr Senckenberg Inst Neurooncol, Frankfurt, Germany
基金
欧盟地平线“2020”;
关键词
biostatistics; immunotherapy; melanoma; tumor biomarkers; biomarkers; tumor; SURVIVAL; IPILIMUMAB; PEMBROLIZUMAB; NIVOLUMAB; IMMUNOTHERAPY; EXPRESSION; OUTCOMES;
D O I
10.1136/jitc-2020-002226
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Therapies based on targeting immune checkpoints have revolutionized the treatment of metastatic melanoma in recent years. Still, biomarkers predicting long-term therapy responses are lacking. Methods A novel approach of reference-free deconvolution of large-scale DNA methylation data enabled us to develop a machine learning classifier based on CpG sites, specific for latent methylation components (LMC), that allowed for patient allocation to prognostic clusters. DNA methylation data were processed using reference-free analyses (MeDeCom) and reference-based computational tumor deconvolution (MethylCIBERSORT, LUMP). Results We provide evidence that DNA methylation signatures of tumor tissue from cutaneous metastases are predictive for therapy response to immune checkpoint inhibition in patients with stage IV metastatic melanoma. Conclusions These results demonstrate that LMC-based segregation of large-scale DNA methylation data is a promising tool for classifier development and treatment response estimation in cancer patients under targeted immunotherapy.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Peripheral blood biomarkers in immune checkpoint inhibition therapy in metastatic melanoma
    Ghelani, Ghanshyam H.
    Mandava, Anupa
    Zerdan, Maroun Bou
    Mehta, Radhika
    Sivapiragasam, Abirami
    JOURNAL OF CLINICAL ONCOLOGY, 2024, 42 (16)
  • [22] Long-Term Outcomes of Immune Checkpoint Inhibition in Metastatic Melanoma
    Aroldi, Francesca
    Middleton, Mark R.
    AMERICAN JOURNAL OF CLINICAL DERMATOLOGY, 2022, 23 (03) : 331 - 338
  • [23] Immune profiling of metastatic uveal melanoma and response to immune checkpoint inhibitors.
    Shao, Yusra F.
    Baca, Yasmine
    Xiu, Joanne
    Vanderwalde, Ari M.
    In, Gino Kim
    Hoon, Dave S. B.
    Domingo-Musibay, Evidio
    Darabi, Sourat
    Eisenberg, Burton Larry
    Sato, Takami
    Gibney, Geoffrey Thomas
    Mamdani, Hirva
    Moser, Justin C.
    JOURNAL OF CLINICAL ONCOLOGY, 2022, 40 (16)
  • [24] Baseline blood DNA methylation-based immune profiles are associated with survival outcomes in head and neck cancer patients on immune checkpoint therapy
    Zhang, Ze
    Sehgal, Kartik
    Shirai, Keisuke
    Butler, Rondi
    Lee, Min Kyung
    Molinaro, Annette
    Wiencke, John
    Koestler, Devin
    Stolrow, Hannah
    Ramush, Geat
    Salas, Lucas
    Haddad, Robert
    Kelsey, Karl
    Christensen, Brock
    CLINICAL CANCER RESEARCH, 2023, 29 (18)
  • [25] Feasibility of Monitoring Response to Metastatic Prostate Cancer Treatment with a Methylation-Based Circulating Tumor DNA Approach
    Buettner, Thomas
    Dietrich, Dimo
    Zarbl, Romina
    Kluemper, Niklas
    Ellinger, Joerg
    Krausewitz, Philipp
    Ritter, Manuel
    CANCERS, 2024, 16 (03)
  • [26] The complex relationship between body mass index and response to immune checkpoint inhibition in metastatic melanoma patients
    Donnelly, Douglas
    Bajaj, Shirin
    Yu, Jaehong
    Hsu, Miles
    Balar, Arjun
    Pavlick, Anna
    Weber, Jeffrey
    Osman, Iman
    Zhong, Judy
    JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2019, 7 (01)
  • [27] The association between DNA methylation and human height and a prospective model of DNA methylation-based height prediction
    Zhonghua Wang
    Guangping Fu
    Guanju Ma
    Chunyan Wang
    Qian Wang
    Chaolong Lu
    Lihong Fu
    Xiaojing Zhang
    Bin Cong
    Shujin Li
    Human Genetics, 2024, 143 : 401 - 421
  • [28] The association between DNA methylation and human height and a prospective model of DNA methylation-based height prediction
    Wang, Zhonghua
    Fu, Guangping
    Ma, Guanju
    Wang, Chunyan
    Wang, Qian
    Lu, Chaolong
    Fu, Lihong
    Zhang, Xiaojing
    Cong, Bin
    Li, Shujin
    HUMAN GENETICS, 2024, 143 (03) : 401 - 421
  • [29] DNA Methylation-Based Prediction of Post-operative Atrial Fibrillation
    Fischer, Matthew A.
    Mahajan, Aman
    Cabaj, Maximilian
    Kimball, Todd H.
    Morselli, Marco
    Soehalim, Elizabeth
    Chapski, Douglas J.
    Montoya, Dennis
    Farrell, Colin P.
    Scovotti, Jennifer
    Bueno, Claudia T.
    Mimila, Naomi A.
    Shemin, Richard J.
    Elashoff, David
    Pellegrini, Matteo
    Monte, Emma
    Vondriska, Thomas M.
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
  • [30] DNA methylation-based age prediction using cell separation algorithm
    Jaddi, Najmeh Sadat
    Abadeh, Mohammad Saniee
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 121