Mechanisms of plant and microbial adaptation to heavy metals in plant-microbial systems

被引:27
|
作者
Pishchik, V. N. [1 ]
Vorob'ev, N. I. [2 ]
Provorov, N. A. [2 ]
Khomyakov, Yu. V. [1 ]
机构
[1] Inst Agrophys, St Petersburg, Russia
[2] All Russia Res Inst Agr Microbiol, St Petersburg, Russia
基金
俄罗斯科学基金会;
关键词
plant-microbial system; heavy metals; adaptation; GROWTH-PROMOTING RHIZOBACTERIA; THLASPI-CAERULESCENS; MATHEMATICAL SIMULATION; CADMIUM ACCUMULATION; RHIZOSPHERE BACTERIA; PSEUDOMONAS-PUTIDA; WASTE-WATER; RESISTANCE; TOLERANCE; SOIL;
D O I
10.1134/S0026261716030097
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The data on heavy metal (HM) accumulation and detoxification by plants and bacteria in plant-microbial systems (PMS) are reviewed. Bacteria are shown to be the labile component of the system, responsible for a considerable amelioration of HM stress impact on plants and for improved PMS adaptation to heavy metals. Simulation of plant-microbial interactions under conditions of soil contamination by HM revealed the protective role of bacterial migration from the rhizoplane to the rhizosphere.
引用
收藏
页码:257 / 271
页数:15
相关论文
共 50 条
  • [41] New plant-growth medium for increased power output of the Plant-Microbial Fuel Cell
    Helder, M.
    Strik, D. P. B. T. B.
    Hamelers, H. V. M.
    Kuijken, R. C. P.
    Buisman, C. J. N.
    BIORESOURCE TECHNOLOGY, 2012, 104 : 417 - 423
  • [42] VOLTAGE PRODUCTION IN A PLANT-MICROBIAL FUEL CELL USING Agapanthus africanus
    Gomora-Hernandez, J. C.
    Serment-Guerrero, J. H.
    Carreno-de-Leon, M. C.
    Flores-Alamo, N.
    REVISTA MEXICANA DE INGENIERIA QUIMICA, 2020, 19 (01): : 227 - 237
  • [43] Energy from Plants and Microorganisms: Progress in Plant-Microbial Fuel Cells
    Deng, Huan
    Chen, Zheng
    Zhao, Feng
    CHEMSUSCHEM, 2012, 5 (06) : 1006 - 1011
  • [44] Wheat lectin as a factor in plant-microbial communication and a stress response protein
    L. P. Antonyuk
    N. V. Evseeva
    Microbiology, 2006, 75 : 470 - 475
  • [45] Plant-microbial interactions facilitate grassland species coexistence at the community level
    Li, Jiahuan
    Xie, Shu
    Wilson, Gail W. T.
    Cobb, Adam B.
    Tang, Shiming
    Guo, Lizhu
    Wang, Kun
    Deng, Bo
    OIKOS, 2020, 129 (04) : 533 - 543
  • [46] Bioelectrochemical arsenite oxidation in rice rhizosphere in plant-microbial fuel cells
    Wang, X. Q.
    Lv, Y. H.
    Liu, C. P.
    Li, F. B.
    Du, Y. H.
    ENVIRONMENTAL ARSENIC IN A CHANGING WORLD (AS2018), 2018, : 257 - 258
  • [47] Long range wireless sensing powered by plant-microbial fuel cell
    Rossi, Maurizio
    Tosato, Pietro
    Gemma, Luca
    Torquati, Luca
    Catania, Cristian
    Camalo, Sergio
    Brunelli, Davide
    PROCEEDINGS OF THE 2017 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE), 2017, : 1651 - 1654
  • [48] Disconnection between plant-microbial nutrient limitation across forest biomes
    Liu, Ji
    Fang, Linchuan
    Qiu, Tianyi
    Bing, Haijian
    Cui, Yongxing
    Sardans, Jordi
    Du, Enzai
    Chen, Ji
    Tan, Wenfeng
    Delgado-Baquerizo, Manuel
    Zhou, Guiyao
    Cui, Qingliang
    Penuelas, Josep
    FUNCTIONAL ECOLOGY, 2023, 37 (08) : 2271 - 2281
  • [49] Evolution of specialization in a plant-microbial mutualism is explained by the oscillation theory of speciation
    Torres-Martinez, Lorena
    Porter, Stephanie S.
    Wendlandt, Camille
    Purcell, Jessica
    Ortiz-Barbosa, Gabriel
    Rothschild, Jacob
    Lampe, Mathew
    Warisha, Farsamin
    Le, Tram
    Weisberg, Alexandra J.
    Chang, Jeff H.
    Sachs, Joel L.
    EVOLUTION, 2021, 75 (05) : 1070 - 1086
  • [50] Plant-microbial interaction: The mechanism and the application of microbial elicitor induced secondary metabolites biosynthesis in medicinal plants
    Chamkhi, Imane
    Benali, Taoufiq
    Aanniz, Tarik
    El Menyiy, Naoual
    Guaouguaou, Fatima-Ezzahrae
    El Omari, Nasreddine
    El-Shazly, Mohamed
    Zengin, Gokhan
    Bouyahya, Abdelhakim
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2021, 167 : 269 - 295