Mechanisms of plant and microbial adaptation to heavy metals in plant-microbial systems

被引:27
|
作者
Pishchik, V. N. [1 ]
Vorob'ev, N. I. [2 ]
Provorov, N. A. [2 ]
Khomyakov, Yu. V. [1 ]
机构
[1] Inst Agrophys, St Petersburg, Russia
[2] All Russia Res Inst Agr Microbiol, St Petersburg, Russia
基金
俄罗斯科学基金会;
关键词
plant-microbial system; heavy metals; adaptation; GROWTH-PROMOTING RHIZOBACTERIA; THLASPI-CAERULESCENS; MATHEMATICAL SIMULATION; CADMIUM ACCUMULATION; RHIZOSPHERE BACTERIA; PSEUDOMONAS-PUTIDA; WASTE-WATER; RESISTANCE; TOLERANCE; SOIL;
D O I
10.1134/S0026261716030097
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The data on heavy metal (HM) accumulation and detoxification by plants and bacteria in plant-microbial systems (PMS) are reviewed. Bacteria are shown to be the labile component of the system, responsible for a considerable amelioration of HM stress impact on plants and for improved PMS adaptation to heavy metals. Simulation of plant-microbial interactions under conditions of soil contamination by HM revealed the protective role of bacterial migration from the rhizoplane to the rhizosphere.
引用
收藏
页码:257 / 271
页数:15
相关论文
共 50 条
  • [21] The Exudation of Surplus Products Links Plant Functional Traits and Plant-Microbial Stoichiometry
    Cardenas, Julian
    Santa, Fernando
    Kastovska, Eva
    LAND, 2021, 10 (08)
  • [22] Plant-microbial competition for nitrogen increases microbial activities and carbon loss in invaded soils
    Craig, Matthew E.
    Fraterrigo, Jennifer M.
    OECOLOGIA, 2017, 184 (03) : 583 - 596
  • [23] Soil animals influence microbial abundance, but not plant-microbial competition for soil organic nitrogen
    Cole, L
    Staddon, PL
    Sleep, D
    Bardgett, RD
    FUNCTIONAL ECOLOGY, 2004, 18 (05) : 631 - 640
  • [24] Microbial Conversion of Tomato by a Plant Pathogenic Bacterium Pectobacterium atrosepticum: a Plant-Microbial Approach to Control Pathogenic Candida Species
    Bajpai, Vivek K.
    Kang, Sun Chul
    Lee, Soon-Gu
    Baek, Kwang-Hyun
    NATURAL PRODUCT COMMUNICATIONS, 2012, 7 (01) : 65 - 69
  • [25] Efficiency of Spathiphyllum spp. as a plant-microbial fuel cell
    Kwon, Kei Jung
    Park, Bong Ju
    ORNAMENTAL HORTICULTURE-REVISTA BRASILEIRA DE HORTICULTURA ORNAMENTAL, 2021, 27 (02): : 173 - 182
  • [26] Bioelectrochemical Chromium(VI) Removal in Plant-Microbial Fuel Cells
    Habibul, Nuzahat
    Hu, Yi
    Wang, Yun-Kun
    Chen, Wei
    Yu, Han-Qing
    Sheng, Guo-Ping
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2016, 50 (07) : 3882 - 3889
  • [27] Editorial: plant-microbial symbiosis toward sustainable food security
    Campos-Avelar, Ixchel
    Montoya-Martinez, Amelia C.
    Parra-Cota, Fannie I.
    de los Santos-villalobos, Sergio
    PLANT SIGNALING & BEHAVIOR, 2024, 19 (01)
  • [28] Flora Health Wireless Monitoring with Plant-Microbial Fuel Cell
    Brunelli, Davide
    Tosato, Pietro
    Rossi, Maurizio
    PROCEEDINGS OF THE 30TH ANNIVERSARY EUROSENSORS CONFERENCE - EUROSENSORS 2016, 2016, 168 : 1646 - 1650
  • [29] Electrogenesis in Plant-Microbial Fuel Cells in Parallel and Series Connections
    Kuleshova, T. E.
    Gall, N. R.
    Galushko, A. S.
    Panova, G. G.
    TECHNICAL PHYSICS, 2021, 66 (03) : 496 - 504
  • [30] Microbial and plant derived biomass for removal of heavy metals from wastewater
    Ahluwalia, Sarabjeet Singh
    Goyal, Dinesh
    BIORESOURCE TECHNOLOGY, 2007, 98 (12) : 2243 - 2257