Unbiased Inference for Discretely Observed Hidden Markov Model Diffusions

被引:13
|
作者
Chada, Neil K. [1 ]
Franks, Jordan [2 ]
Jasra, Ajay [1 ]
Law, Kody J. [3 ]
Vihola, Matti [4 ]
机构
[1] King Abdullah Univ Sci & Technol, Comp Elect & Math Sci & Engn Div, Thuwal, Saudi Arabia
[2] Newcastle Univ, Sch Math Stat & Phys, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[3] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
[4] Univ Jyvaskyla, Dept Math & Stat, FI-40014 Jyvaskyla, Finland
来源
基金
芬兰科学院;
关键词
diffusion; importance sampling; Markov chain Monte Carlo; multilevel Monte Carlo; sequential Monte Carlo; PARTICLE FILTERS; EXACT SIMULATION; EFFICIENCY;
D O I
10.1137/20M131549X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a Bayesian inference method for diffusions observed discretely and with noise, which is free of discretization bias. Unlike existing unbiased inference methods, our method does not rely on exact simulation techniques. Instead, our method uses standard time-discretized approximations of diffusions, such as the Euler-Maruyama scheme. Our approach is based on particle marginal Metropolis-Hastings, a particle filter, randomized multilevel Monte Carlo, and an importance sampling type correction of approximate Markov chain Monte Carlo. The resulting estimator leads to inference without a bias from the time-discretization as the number of Markov chain iterations increases. We give convergence results and recommend allocations for algorithm inputs. Our method admits a straightforward parallelization and can be computationally efficient. The user-friendly approach is illustrated on three examples, where the underlying diffusion is an Ornstein-Uhlenbeck process, a geometric Brownian motion, and a 2d nonreversible Langevin equation.
引用
收藏
页码:763 / 787
页数:25
相关论文
共 50 条
  • [41] Piecewise Approximate Bayesian Computation: fast inference for discretely observed Markov models using a factorised posterior distribution
    White, S. R.
    Kypraios, T.
    Preston, S. P.
    STATISTICS AND COMPUTING, 2015, 25 (02) : 289 - 301
  • [42] Selective inference for false discovery proportion in a hidden Markov model
    Marie Perrot-Dockès
    Gilles Blanchard
    Pierre Neuvial
    Etienne Roquain
    TEST, 2023, 32 : 1365 - 1391
  • [43] Selective inference for false discovery proportion in a hidden Markov model
    Perrot-Dockes, Marie
    Blanchard, Gilles
    Neuvial, Pierre
    Roquain, Etienne
    TEST, 2023, 32 (04) : 1365 - 1391
  • [44] Piecewise Approximate Bayesian Computation: fast inference for discretely observed Markov models using a factorised posterior distribution
    S. R. White
    T. Kypraios
    S. P. Preston
    Statistics and Computing, 2015, 25 : 289 - 301
  • [45] Computational Doob h-transforms for Online Filtering of Discretely Observed Diffusions
    Chopin, Nicolas
    Fulop, Andras
    Heng, Jeremy
    Thiery, Alexandre H.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202
  • [46] Markov Chain Monte Carlo for Exact Inference for Diffusions
    Sermaidis, Giorgos
    Papaspiliopoulos, Omiros
    Roberts, Gareth O.
    Beskos, Alexandros
    Fearnhead, Paul
    SCANDINAVIAN JOURNAL OF STATISTICS, 2013, 40 (02) : 294 - 321
  • [47] Estimation for discretely observed small diffusions based on approximate martingale estimating functions
    Uchida, M
    SCANDINAVIAN JOURNAL OF STATISTICS, 2004, 31 (04) : 553 - 566
  • [48] Efficient nonparametric inference for discretely observed compound Poisson processes
    Coca, Alberto J.
    PROBABILITY THEORY AND RELATED FIELDS, 2018, 170 (1-2) : 475 - 523
  • [49] Inference in hidden Markov models.
    Lev, Benjamin
    INTERFACES, 2007, 37 (02) : 197 - 198
  • [50] Likelihood inference for a discretely observed stochastic partial differential equation
    Markussen, B
    BERNOULLI, 2003, 9 (05) : 745 - 762