Distinguishing surface effects of gold nanoparticles from plasmonic effect on photoelectrochemical water splitting by hematite

被引:24
|
作者
Li, Jiangtian [1 ]
Cushing, Scott K. [1 ,2 ]
Chu, Deryn [3 ]
Zheng, Peng [1 ]
Bright, Joeseph [1 ]
Castle, Conner [1 ]
Manivannan, Ayyakkannu [4 ]
Wu, Nianqiang [1 ]
机构
[1] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA
[2] W Virginia Univ, Dept Phys & Astron, Morgantown, WV 26506 USA
[3] US Army Res Lab, Sensors & Electron Devices Directorate, Adelphi, MD 20783 USA
[4] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA
基金
美国国家科学基金会;
关键词
energy generation; nanostructure; photochemical; PHOTOCATALYTIC ACTIVITY; BIVO4; PHOTOANODES; ENERGY-TRANSFER; SOLAR; METAL; ENHANCEMENT; GENERATION;
D O I
10.1557/jmr.2016.102
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Gold nanoparticles have been deposited on the surface of hematite nanorod array photoanode to improve the photoelectrochemical water splitting performance. The Au nanoparticles induce the Fermi level equilibration, the surface catalysis, and the plasmonic enhancement effects in the Au/hematite photoanode. The Fermi level equilibration effect promotes the extraction of photo-generated charge carriers, suppressing the charge recombination. Surface catalysis effect reduces the overpotential for photoelectrochemical water oxidation. In the Au/hematite sample, the Fermi level equilibration and the surface catalysis effect make major contribution to photocurrent enhancement while the plasmonic effect makes a little contribution. In addition, the Au@SiO2 particle has been immobilized on hematite nanorod array surface that has been passivated. In the Au@SiO2/hematite sample, the photocurrent enhancement originating from plasmonic effects is negligible. Both the Femi level equilibration and the surface catalysis effects were excluded due to the isolated Au and hematite while surface passivation is mainly responsible for the photocurrent enhancement.
引用
收藏
页码:1608 / 1615
页数:8
相关论文
共 50 条
  • [31] Coupling effects of indium oxide layer on hematite enabling efficient photoelectrochemical water splitting
    Yi, Sha-Sha
    Wang, Ze-Yuan
    Li, Hua-Min
    Zafar, Zaiba
    Zhang, Zong-Tao
    Zhang, Li-Ying
    Chen, De-Liang
    Liu, Zhong-Yi
    Yue, Xin-Zheng
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 283 (283)
  • [32] Effect of HF Treatment on the Photoelectrochemical Properties of a Hematite Thin Film Photoanode for Water Splitting
    Hu Yu-Xiang
    Jiang Chun-Xiang
    Fang Liang
    Zheng Fen-Gang
    Dong Wen
    Su Xiao-Dong
    Shen Ming-Rong
    ACTA PHYSICO-CHIMICA SINICA, 2014, 30 (06) : 1099 - 1106
  • [33] Photothermal effect of carbon quantum dots enhanced photoelectrochemical water splitting of hematite photoanodes
    Hu, Xiaoqin
    Huang, Jing
    Zhao, Feifan
    Yi, Ping
    He, Bing
    Wang, Yang
    Chen, Tao
    Chen, Yihuang
    Li, Zhen
    Liu, Xueqin
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (30) : 14915 - 14920
  • [34] Ultrathin planar hematite film for solar photoelectrochemical water splitting
    Liu, Dong
    Bierman, David M.
    Lenert, Andrej
    Yu, Hai-Tong
    Yang, Zhen
    Wang, Evelyn N.
    Duan, Yuan-Yuan
    OPTICS EXPRESS, 2015, 23 (24): : A1491 - A1498
  • [35] Optimizing hematite nanostructures for electrochemical and photoelectrochemical water splitting applications
    Rohilla, Jyoti
    Ingole, Pravin Popinand
    CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2021, 29
  • [36] 1D hematite nanostructures for photoelectrochemical water splitting
    Kim, Do Hong
    Lee, Jong-Heun
    Jang, Ho Won
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [37] Synthesis and Characterization of Titanium Doped Hematite for Photoelectrochemical Water Splitting
    Tang, Houwen
    Matin, M.
    Wang, Heli
    Al-Jassim, Mowafak
    Turner, John
    Yan, Yanfa
    SOLAR HYDROGEN AND NANOTECHNOLOGY VI, 2011, 8109
  • [38] Hematite photoanodes prepared by particle transfer for photoelectrochemical water splitting
    Pan, Zhenhua
    Yanagi, Rito
    Higashi, Tomohiro
    Pihosh, Yuriy
    Hu, Shu
    Katayama, Kenji
    SUSTAINABLE ENERGY & FUELS, 2022, 6 (08) : 2067 - 2074
  • [39] Highly oriented hematite nanorods arrays for photoelectrochemical water splitting
    de Carvalho, Vitor A. N.
    Luz, Roberto A. de S.
    Lima, Bruno H.
    Crespilho, Frank N.
    Leite, Edson R.
    Souza, Flavio L.
    JOURNAL OF POWER SOURCES, 2012, 205 : 525 - 529
  • [40] Morphology-Engineered Hematite Photoanode for Photoelectrochemical Water Splitting
    Park, Juhyung
    Yoon, Ki-Yong
    Ghule, Balaji G.
    Kim, Hyunmin
    Jang, Ji-Hyun
    ACS ENERGY LETTERS, 2024, 9 (06): : 3169 - 3176