Ultrathin planar hematite film for solar photoelectrochemical water splitting

被引:7
|
作者
Liu, Dong [1 ,2 ,3 ]
Bierman, David M. [2 ]
Lenert, Andrej [2 ,4 ]
Yu, Hai-Tong [1 ]
Yang, Zhen [1 ]
Wang, Evelyn N. [2 ]
Duan, Yuan-Yuan [1 ]
机构
[1] Tsinghua Univ, Key Lab Thermal Sci & Power Engn, Minist Educ, Beijing Key Lab CO2 Utilizat & Reduct Technol, Beijing 100084, Peoples R China
[2] MIT, Dept Mech Engn, Device Res Lab, Cambridge, MA 02139 USA
[3] Nanjing Univ Sci Technol, Sch Energy & Power Engn, Nanjing 210094, Peoples R China
[4] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
来源
OPTICS EXPRESS | 2015年 / 23卷 / 24期
基金
中国国家自然科学基金;
关键词
NANOSTRUCTURES; CONVERSION; ABSORPTION; CELLS; OXIDE;
D O I
10.1364/OE.23.0A1491
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Hematite holds promise for photoelectrochemical (PEC) water splitting due to its stability, low-cost, abundance and appropriate bandgap. However, it suffers from a mismatch between the hole diffusion length and light penetration length. We have theoretically designed and characterized an ultrathin planar hematite/silver nanohole array/silver substrate photoanode. Due to the supported destructive interference and surface plasmon resonance, photons are efficiently absorbed in an ultrathin hematite film. Compared with ultrathin hematite photoanodes with nanophotonic structures, this photoanode has comparable photon absorption but with intrinsically lower recombination losses due to its planar structure and promises to exceed the state-of-the-art photocurrent of hematite photoanodes. (C) 2015 Optical Society of America
引用
收藏
页码:A1491 / A1498
页数:8
相关论文
共 50 条
  • [1] Ultrathin hematite film for photoelectrochemical water splitting enhanced with reducing graphene oxide
    Wu, Quanping
    Zhao, Jun
    Liu, Kan
    Wang, Hongyan
    Sun, Zhe
    Li, Ping
    Xue, Song
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (21) : 6763 - 6770
  • [2] Enhanced photoelectrochemical water splitting on hematite thin film with ultrathin SiO2 underlayer
    Kang, Myung Jong
    Kang, Young Soo
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [3] Deposition of FeOOH Layer on Ultrathin Hematite Nanoflakes to Promote Photoelectrochemical Water Splitting
    Zhang, Wenyao
    Zhang, Ya
    Miao, Xiao
    Zhao, Ling
    Zhu, Changqing
    [J]. MICROMACHINES, 2024, 15 (03)
  • [4] Ultrathin insulating under-layer with a hematite thin film for enhanced photoelectrochemical (PEC) water splitting activity
    Kang, Myung Jong
    Kang, Young Soo
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (30) : 15723 - 15728
  • [5] Ultrathin film absorber for solar water splitting
    Liu, Dong
    Yu, Haitong
    Yang, Zhen
    Duan, Yuanyuan
    [J]. Huagong Xuebao/CIESC Journal, 2015, 66 : 297 - 301
  • [6] Hematite nanostructures for photoelectrochemical water splitting
    Ling, Yichuan
    Wang, Gongming
    Wheeler, Damon A.
    Zhang, Jin Z.
    Li, Yat
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [7] Controlling Photoactivity in Ultrathin Hematite Films for Solar Water-Splitting
    Le Formal, Florian
    Graetzel, Michael
    Sivula, Kevin
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (07) : 1099 - 1107
  • [8] Ethylene glycol adjusted nanorod hematite film for active photoelectrochemical water splitting
    Fu, Li
    Yu, Hongmei
    Li, Yongkun
    Zhang, Changkun
    Wang, Xunying
    Shao, Zhigang
    Yi, Baolian
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (09) : 4284 - 4290
  • [9] Solar water splitting: The role of cobalt phosphate in enhancing the photoelectrochemical efficiency of hematite
    Carroll, Gerard M.
    Zhong, Diane K.
    Gamelin, Daniel R.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [10] Enhanced photoelectrochemical water splitting on hematite thin film with layer-by-layer deposited ultrathin TiO2 underlayer
    Wang, Dan
    Zhang, Xin-Tong
    Sun, Pan-Pan
    Lu, Shan
    Wang, Ling-Ling
    Wei, Yong-An
    Liu, Yi-Chun
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (28) : 16212 - 16219