Regularized penalty method for non-coercive parabolic optimal control problems

被引:0
|
作者
Kaplan, A [1 ]
Tichatschke, R [1 ]
机构
[1] Univ Trier, Dept Math, Trier, Germany
来源
CONTROL AND CYBERNETICS | 1998年 / 27卷 / 01期
关键词
proximal point methods; ill-posed parabolic control problems; distributed control; penalty methods;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The application of a proximal point approach to ill-posed convex control problems governed by linear parabolic equations is studied. A stable penalty method is constructed by means of multi-step proximal regularization (only w.r.t. the control functions) in the penalized problems. For distributed control problems with state constraints convergence of the approximately determined solutions of the regularized problems to an optimal process is proved.
引用
收藏
页码:5 / 27
页数:23
相关论文
共 50 条
  • [21] A priori estimates for non-coercive Dirichlet problems with subquadratic gradient terms
    Carmona, Jose
    Lopez-Martinez, Salvador
    Martinez-Aparicio, Pedro J.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 366 : 292 - 319
  • [22] On the variational convergence of non-coercive quadratic integral functionals and semicontinuity problems
    F. Acanfora
    G. Cardone
    S. Mortola
    Nonlinear Differential Equations and Applications NoDEA, 2003, 10 : 347 - 373
  • [23] An exact penalty method for constrained optimal control problems
    Hammoudi, Abdelwahhab
    Benharrat, Mohammed
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (01) : 275 - 293
  • [24] An exact penalty method for constrained optimal control problems
    Abdelwahhab Hammoudi
    Mohammed Benharrat
    Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 275 - 293
  • [25] On the variational convergence of non-coercive quadratic integral functionals and semicontinuity problems
    Acanfora, F
    Cardone, G
    Mortola, S
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2003, 10 (03): : 347 - 373
  • [26] On non-coercive mixed problems for parameter-dependent elliptic operators
    Polkovnikov, Alexander
    Shlapunov, Alexander
    MATHEMATICAL COMMUNICATIONS, 2015, 20 (02) : 131 - 150
  • [27] Non-coercive problems for Kirchhoff–Love plates with thin rigid inclusion
    Alexander Khludnev
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [28] On Initial Boundary Value Problem for Parabolic Differential Operator with Non-coercive Boundary Conditions
    Polkovnikov, Alexander N.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2020, 13 (05): : 547 - 558
  • [29] Non-coercive problems for Kirchhoff-Love plates with thin rigid inclusion
    Khludnev, Alexander
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (02):
  • [30] AN INTERIOR PENALTY METHOD FOR INEQUALITY CONSTRAINED OPTIMAL CONTROL PROBLEMS
    LASDON, LS
    WAREN, AD
    RICE, RK
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1967, AC12 (04) : 388 - +