Extraction of interaction parameters for α-RuCl3 from neutron data using machine learning

被引:12
|
作者
Samarakoon, Anjana M. [1 ,2 ,3 ]
Laurell, Pontus [4 ,5 ,6 ]
Balz, Christian [7 ]
Banerjee, Arnab [2 ,8 ]
Lampen-Kelley, Paula [9 ,10 ]
Mandrus, David [9 ,10 ]
Nagler, Stephen E. [2 ,11 ]
Okamoto, Satoshi [10 ,11 ]
Tennant, D. Alan [1 ,6 ,10 ,11 ]
机构
[1] Oak Ridge Natl Lab, Shull Wollan Ctr, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Neutron Scattering Div, Oak Ridge, TN 37831 USA
[3] Argonne Natl Lab, Mat Sci Div, Lemont, IL 60439 USA
[4] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[5] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA
[6] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
[7] Rutherford Appleton Lab, ISIS Neutron & Muon Source, Didcot OX11 0QX, Oxon, England
[8] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47906 USA
[9] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[10] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[11] Oak Ridge Natl Lab, Quantum Sci Ctr, Oak Ridge, TN 37831 USA
来源
PHYSICAL REVIEW RESEARCH | 2022年 / 4卷 / 02期
关键词
QUANTUM; FRACTIONALIZATION; ANYONS;
D O I
10.1103/PhysRevResearch.4.L022061
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Single-crystal inelastic neutron-scattering (INS) data contain rich information about the structure and dynamics of a material. Yet the challenge of matching sophisticated theoretical models with large data volumes is compounded by computational complexity and the ill-posed nature of the inverse scattering problem. Here we utilize a novel machine-learning (ML)-assisted framework featuring multiple neural network architectures to address this via high-dimensional modeling and numerical methods. A comprehensive data set of diffraction and INS measured on the Kitaev material alpha - RuCl3 is processed to extract its Hamiltonian. Semiclassical Landau-Lifshitz dynamics and Monte-Carlo simulations were employed to explore the parameter space of an extended Kitaev-Heisenberg Hamiltonian. A ML-assisted iterative algorithm was developed to map the uncertainty manifold to match experimental data, a nonlinear autoencoder was used to undertake information compression, and radial basis networks were utilized as fast surrogates for diffraction and dynamics simulations to predict potential spin Hamiltonians with uncertainty. Exact diagonalization calculations were employed to assess the impact of quantum fluctuations on the selected parameters around the best prediction.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Named Entity Extraction from Semi-structured Data Using Machine Learning Algorithms
    Mansurova, Madina
    Barakhnin, Vladimir
    Khibatkhanuly, Yerzhan
    Pastushkov, Ilya
    COMPUTATIONAL COLLECTIVE INTELLIGENCE, PT II, 2019, 11684 : 58 - 69
  • [32] Automated extraction of physical parameters from experimentally obtained thermal profiles using a machine learning approach
    Huang, Guanglong
    Zhang, Mojue
    Montiel, David
    Soundararajan, Praveen
    Wang, Yusu
    Denney, Jonathan J.
    Corrao, Adam A.
    Khalifah, Peter G.
    Thornton, Katsuyo
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 194
  • [33] Asymmetric hydrogenation reactions using a practical in situ generation of chiral ruthenium-diphosphine catalysts from anhydrous RuCl3
    Madec, J
    Pfister, X
    Phansavath, P
    Ratovelomanana-Vidal, V
    Genêt, JP
    TETRAHEDRON, 2001, 57 (13) : 2563 - 2568
  • [34] Machine learning in neutron scattering data analysis
    Wang, Hao
    Du, Rong
    Liu, Zhiyong
    Zhang, Junrong
    JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2024, 17 (02)
  • [35] An efficient stereoselective dihydroxylation of glycals using a bimetallic system, RuCl3/CeCl3/NaIO4
    Tiwari, P
    Misra, AK
    JOURNAL OF ORGANIC CHEMISTRY, 2006, 71 (07): : 2911 - 2913
  • [36] CHEMICALLY MODIFIED ELECTRODES .8. INTERACTION OF AQUEOUS RUCL3 WITH NATIVE AND SILANIZED SNO2 ELECTRODES
    WIER, LM
    MURRAY, RW
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1979, 126 (04) : 617 - 623
  • [37] Protecting Machine Learning Models from Training Data Set Extraction
    M. O. Kalinin
    A. A. Muryleva
    V. V. Platonov
    Automatic Control and Computer Sciences, 2024, 58 (8) : 1234 - 1241
  • [38] Deriving models for the Kitaev spin-liquid candidate material α-RuCl3 from first principles
    Eichstaedt, Casey
    Zhang, Yi
    Laurell, Pontus
    Okamoto, Satoshi
    Eguiluz, Adolfo G.
    Berlijn, Tom
    PHYSICAL REVIEW B, 2019, 100 (07)
  • [40] Exchange interactions in d5 Kitaev materials: From Na2IrO3 to α-RuCl3
    Liu, Huimei
    Chaloupka, Jiri
    Khaliullin, Giniyat
    PHYSICAL REVIEW B, 2022, 105 (21)