Extraction of interaction parameters for α-RuCl3 from neutron data using machine learning

被引:12
|
作者
Samarakoon, Anjana M. [1 ,2 ,3 ]
Laurell, Pontus [4 ,5 ,6 ]
Balz, Christian [7 ]
Banerjee, Arnab [2 ,8 ]
Lampen-Kelley, Paula [9 ,10 ]
Mandrus, David [9 ,10 ]
Nagler, Stephen E. [2 ,11 ]
Okamoto, Satoshi [10 ,11 ]
Tennant, D. Alan [1 ,6 ,10 ,11 ]
机构
[1] Oak Ridge Natl Lab, Shull Wollan Ctr, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Neutron Scattering Div, Oak Ridge, TN 37831 USA
[3] Argonne Natl Lab, Mat Sci Div, Lemont, IL 60439 USA
[4] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[5] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA
[6] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
[7] Rutherford Appleton Lab, ISIS Neutron & Muon Source, Didcot OX11 0QX, Oxon, England
[8] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47906 USA
[9] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[10] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[11] Oak Ridge Natl Lab, Quantum Sci Ctr, Oak Ridge, TN 37831 USA
来源
PHYSICAL REVIEW RESEARCH | 2022年 / 4卷 / 02期
关键词
QUANTUM; FRACTIONALIZATION; ANYONS;
D O I
10.1103/PhysRevResearch.4.L022061
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Single-crystal inelastic neutron-scattering (INS) data contain rich information about the structure and dynamics of a material. Yet the challenge of matching sophisticated theoretical models with large data volumes is compounded by computational complexity and the ill-posed nature of the inverse scattering problem. Here we utilize a novel machine-learning (ML)-assisted framework featuring multiple neural network architectures to address this via high-dimensional modeling and numerical methods. A comprehensive data set of diffraction and INS measured on the Kitaev material alpha - RuCl3 is processed to extract its Hamiltonian. Semiclassical Landau-Lifshitz dynamics and Monte-Carlo simulations were employed to explore the parameter space of an extended Kitaev-Heisenberg Hamiltonian. A ML-assisted iterative algorithm was developed to map the uncertainty manifold to match experimental data, a nonlinear autoencoder was used to undertake information compression, and radial basis networks were utilized as fast surrogates for diffraction and dynamics simulations to predict potential spin Hamiltonians with uncertainty. Exact diagonalization calculations were employed to assess the impact of quantum fluctuations on the selected parameters around the best prediction.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Data reduction in deterministic neutron transport calculations using machine learning
    Whewell, Ben
    McClarren, Ryan G.
    ANNALS OF NUCLEAR ENERGY, 2022, 176
  • [22] Machine Learning for Knowledge Extraction from PHR Big Data
    Poulymenopoulou, Michaela
    Malamateniou, Flora
    Vassilacopoulos, George
    INTEGRATING INFORMATION TECHNOLOGY AND MANAGEMENT FOR QUALITY OF CARE, 2014, 202 : 36 - 39
  • [23] Using Machine Learning to Infer Reasoning Provenance from User Interaction Log Data
    Kodagoda N.
    Pontis S.
    Simmie D.
    Attfield S.
    Wong B.L.W.
    Blandford A.
    Hankin C.
    Journal of Cognitive Engineering and Decision Making, 2017, 11 (01) : 23 - 41
  • [24] Prediction of electron-solid interaction parameters using machine learning
    Akbari, Fatemeh
    MEDICAL PHYSICS, 2024,
  • [25] Anodic, cathodic and cyclic voltammetric deposition of ruthenium oxides from aqueous RuCl3 solutions
    Jow, Jiin-Jiang
    Lee, Hung-Jie
    Chen, Ho-Rei
    Wu, Mao-Sung
    Wei, Tsong-Yang
    ELECTROCHIMICA ACTA, 2007, 52 (07) : 2625 - 2633
  • [26] Selective Oxidation of Benzyl Alcohols Using RuCl3•3H2O/DCHA in Air
    Fan, Weiyong
    Ye, Dongnai
    Zhang, Shiyong
    Shu, Lei
    Liu, Liangxian
    CHINESE JOURNAL OF ORGANIC CHEMISTRY, 2011, 31 (04) : 516 - 520
  • [27] Resonant inelastic x-ray scattering from electronic excitations in α-RuCl3 nanolayers
    Yang, Zichen
    Wang, Lichen
    Zhao, Dong
    Luo, Mingdi
    Laha, Sourav
    Gueth, Achim
    Taniguchi, Takashi
    Watanabe, Kenji
    Lotsch, Bettina V.
    Smet, Jurgen H.
    Minola, Matteo
    Gretarsson, Hlynur
    Keimer, Bernhard
    PHYSICAL REVIEW B, 2023, 108 (04)
  • [28] Statistics and machine learning methods for EHR data - from data extraction to data analytics
    Kundu, Madan G.
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2021, 31 (04) : 559 - 560
  • [29] Multiple spin-orbit excitons in α-RuCl3 from bulk to atomically thin layers
    Lee, Je-Ho
    Choi, Youngsu
    Do, Seung-Hwan
    Kim, Beom Hyun
    Seong, Maeng-Je
    Choi, Kwang-Yong
    NPJ QUANTUM MATERIALS, 2021, 6 (01)
  • [30] Multiple spin-orbit excitons in α-RuCl3 from bulk to atomically thin layers
    Je-Ho Lee
    Youngsu Choi
    Seung-Hwan Do
    Beom Hyun Kim
    Maeng-Je Seong
    Kwang-Yong Choi
    npj Quantum Materials, 6