Extraction of interaction parameters for α-RuCl3 from neutron data using machine learning

被引:12
|
作者
Samarakoon, Anjana M. [1 ,2 ,3 ]
Laurell, Pontus [4 ,5 ,6 ]
Balz, Christian [7 ]
Banerjee, Arnab [2 ,8 ]
Lampen-Kelley, Paula [9 ,10 ]
Mandrus, David [9 ,10 ]
Nagler, Stephen E. [2 ,11 ]
Okamoto, Satoshi [10 ,11 ]
Tennant, D. Alan [1 ,6 ,10 ,11 ]
机构
[1] Oak Ridge Natl Lab, Shull Wollan Ctr, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Neutron Scattering Div, Oak Ridge, TN 37831 USA
[3] Argonne Natl Lab, Mat Sci Div, Lemont, IL 60439 USA
[4] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[5] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA
[6] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
[7] Rutherford Appleton Lab, ISIS Neutron & Muon Source, Didcot OX11 0QX, Oxon, England
[8] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47906 USA
[9] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[10] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[11] Oak Ridge Natl Lab, Quantum Sci Ctr, Oak Ridge, TN 37831 USA
来源
PHYSICAL REVIEW RESEARCH | 2022年 / 4卷 / 02期
关键词
QUANTUM; FRACTIONALIZATION; ANYONS;
D O I
10.1103/PhysRevResearch.4.L022061
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Single-crystal inelastic neutron-scattering (INS) data contain rich information about the structure and dynamics of a material. Yet the challenge of matching sophisticated theoretical models with large data volumes is compounded by computational complexity and the ill-posed nature of the inverse scattering problem. Here we utilize a novel machine-learning (ML)-assisted framework featuring multiple neural network architectures to address this via high-dimensional modeling and numerical methods. A comprehensive data set of diffraction and INS measured on the Kitaev material alpha - RuCl3 is processed to extract its Hamiltonian. Semiclassical Landau-Lifshitz dynamics and Monte-Carlo simulations were employed to explore the parameter space of an extended Kitaev-Heisenberg Hamiltonian. A ML-assisted iterative algorithm was developed to map the uncertainty manifold to match experimental data, a nonlinear autoencoder was used to undertake information compression, and radial basis networks were utilized as fast surrogates for diffraction and dynamics simulations to predict potential spin Hamiltonians with uncertainty. Exact diagonalization calculations were employed to assess the impact of quantum fluctuations on the selected parameters around the best prediction.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Neutron scattering in the proximate quantum spin liquid α-RuCl3
    Banerjee, Arnab
    Yan, Jiaqiang
    Knolle, Johannes
    Bridges, Craig A.
    Stone, Matthew B.
    Lumsden, Mark D.
    Mandrus, David G.
    Tennant, David A.
    Moessner, Roderich
    Nagler, Stephen E.
    SCIENCE, 2017, 356 (6342) : 1055 - 1058
  • [2] OXIDATION OF ALKENES USING THE RUCL3/PHIO SYSTEM
    AGARWAL, DD
    JAIN, R
    CHAKRAVORTY, A
    RASTOGI, R
    POLYHEDRON, 1992, 11 (04) : 463 - 467
  • [3] Ferromagnetic Kitaev interaction and the origin of large magnetic anisotropy in α-RuCl3
    Jennifer A. Sears
    Li Ern Chern
    Subin Kim
    Pablo J. Bereciartua
    Sonia Francoual
    Yong Baek Kim
    Young-June Kim
    Nature Physics, 2020, 16 : 837 - 840
  • [4] Magnetism in α-RuCl3: Dependence on Coulomb Interaction and Hund’s Coupling
    Hoshin Gong
    Kyoo Kim
    Sungdae Ji
    Bongjae Kim
    B. I. Min
    Journal of the Korean Physical Society, 2018, 73 : 1691 - 1697
  • [5] Magnetism in -RuCl3: Dependence on Coulomb Interaction and Hund's Coupling
    Gong, Hoshin
    Kim, Kyoo
    Ji, Sungdae
    Kim, Bongjae
    Min, B. I.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2018, 73 (11) : 1691 - 1697
  • [6] Ferromagnetic Kitaev interaction and the origin of large magnetic anisotropy in α-RuCl3
    Sears, Jennifer A.
    Chern, Li Ern
    Kim, Subin
    Bereciartua, Pablo J.
    Francoual, Sonia
    Kim, Yong Baek
    Kim, Young-June
    NATURE PHYSICS, 2020, 16 (08) : 837 - +
  • [7] Spin-Wave Excitations Evidencing the Kitaev Interaction in Single Crystalline α-RuCl3
    Ran, Kejing
    Wang, Jinghui
    Wang, Wei
    Dong, Zhao-Yang
    Ren, Xiao
    Bao, Song
    Li, Shichao
    Ma, Zhen
    Gan, Yuan
    Zhang, Youtian
    Park, J. T.
    Deng, Guochu
    Danilkin, S.
    Yu, Shun-Li
    Li, Jian-Xin
    Wen, Jinsheng
    PHYSICAL REVIEW LETTERS, 2017, 118 (10)
  • [8] Data Extraction from Traffic Videos Using Machine Learning Approach
    Mittal, Anshul
    Gupta, Mridul
    Ghosh, Indrajit
    SOFT COMPUTING FOR PROBLEM SOLVING, SOCPROS 2017, VOL 1, 2019, 816 : 211 - 221
  • [9] PREPARATION OF Ru/Al2O3 CATALYSTS FROM RuCl3
    Vanine Mazzieri
    Fernando Coloma-Pascual
    Mónica González
    Pablo L"argentičre
    Nora Fígoli
    Reaction Kinetics and Catalysis Letters, 2002, 76 : 53 - 59
  • [10] Preparation of Ru/Al2O3 catalysts from RuCl3
    Mazzieri, V
    Coloma-Pascual, F
    González, M
    L'Argentière, P
    Fígoli, N
    REACTION KINETICS AND CATALYSIS LETTERS, 2002, 76 (01): : 53 - 59