Mining cancer gene expression databases for latent information on intronic microRNAs

被引:4
|
作者
Monterisi, Simona [1 ]
D'Ario, Giovanni [1 ]
Dama, Elisa [1 ,2 ]
Rotmensz, Nicole [2 ]
Confalonieri, Stefano [1 ,3 ]
Tordonato, Chiara [1 ]
Troglio, Flavia [1 ]
Bertalot, Giovanni [1 ]
Maisonneuve, Patrick [2 ]
Viale, Giuseppe [4 ,5 ]
Nicassio, Francesco [1 ,3 ,6 ]
Vecchi, Manuela [1 ,3 ]
Di Fiore, Pier Paolo [1 ,3 ,7 ]
Bianchi, Fabrizio [1 ]
机构
[1] European Inst Oncol, Dept Expt Oncol, Program Mol Med, I-20141 Milan, Italy
[2] European Inst Oncol, Div Epidemiol & Biostat, I-20141 Milan, Italy
[3] FIRC Inst Mol Oncol Fdn, IFOM, Milan, Italy
[4] European Inst Oncol, Div Pathol, I-20141 Milan, Italy
[5] Univ Milan, Sch Med, Milan, Italy
[6] Ist Italian Tecnol, Ctr Genom Sci IIT SEMM, Milan, Italy
[7] Univ Milan, Dept Sci Salute, Milan, Italy
基金
欧洲研究理事会;
关键词
MicroRNA; Cancer; Gene expression; Breast cancer; LARGE-T-ANTIGEN; BREAST-CANCER; HISTOLOGIC GRADE; HOST GENES; CELL; PROGNOSIS; CLASSIFICATION; IDENTIFICATION; PROFILES; SUBTYPES;
D O I
10.1016/j.molonc.2014.10.001
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Around 50% of all human microRNAs reside within introns of coding genes and are usually co-transcribed. Gene expression datasets, therefore, should contain a wealth of miRNA-relevant latent information, exploitable for many basic and translational research aims. The present study was undertaken to investigate this possibility. We developed an in silico approach to identify intronic-miRNAs relevant to breast cancer, using public gene expression datasets. This led to the identification of a miRNA signature for aggressive breast cancer, and to the characterization of novel roles of selected miRNAs in cancer-related biological phenotypes. Unexpectedly, in a number of cases, expression regulation of the intronic-miRNA was more relevant than the expression of their host gene. These results provide a proof of principle for the validity of our intronic miRNA mining strategy, which we envision can be applied not only to cancer research, but also to other biological and biomedical fields. (C) 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:473 / 487
页数:15
相关论文
共 50 条
  • [21] Regulation of the expression of the liver cancer susceptibility gene MICA by microRNAs
    Kishikawa, Takahiro
    Otsuka, Motoyuki
    Yoshikawa, Takeshi
    Ohno, Motoko
    Takata, Akemi
    Shibata, Chikako
    Kondo, Yuji
    Akanuma, Masao
    Yoshida, Haruhiko
    Koike, Kazuhiko
    SCIENTIFIC REPORTS, 2013, 3
  • [22] Mining information from databases for drug discovery
    Morrell, J
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1996, 211 : 52 - CINF
  • [23] Gene expression regulators - MicroRNAs
    Chen, F
    Yin, JQ
    CHINESE SCIENCE BULLETIN, 2005, 50 (13): : 1281 - 1292
  • [24] Gene expression regulators——MicroRNAs
    &YIN
    Q.James
    Chinese Science Bulletin, 2005, (13) : 1281 - 1292
  • [25] ExpressionBlast: mining large, unstructured expression databases
    Guy E Zinman
    Shoshana Naiman
    Yariv Kanfi
    Haim Cohen
    Ziv Bar-Joseph
    Nature Methods, 2013, 10 : 925 - 926
  • [26] ExpressionBlast: mining large, unstructured expression databases
    Zinman, Guy E.
    Naiman, Shoshana
    Kanfi, Yariv
    Cohen, Haim
    Bar-Joseph, Ziv
    NATURE METHODS, 2013, 10 (10) : 925 - 926
  • [27] MicroRNAs in Cancer: From Gene Expression Regulation to the Metastatic Niche Reprogramming
    Ekaterina V. Semina
    Karina D. Rysenkova
    Konstantin E. Troyanovskiy
    Anna A. Shmakova
    Kseniya A. Rubina
    Biochemistry (Moscow), 2021, 86 : 785 - 799
  • [28] Identifying cancer-related microRNAs based on gene expression data
    Zhao, Xing-Ming
    Liu, Ke-Qin
    Zhu, Guanghui
    He, Feng
    Duval, Beatrice
    Richer, Jean-Michel
    Huang, De-Shuang
    Jiang, Chang-Jun
    Hao, Jin-Kao
    Chen, Luonan
    BIOINFORMATICS, 2015, 31 (08) : 1226 - 1234
  • [29] MicroRNAs in Cancer: From Gene Expression Regulation to the Metastatic Niche Reprogramming
    Semina, Ekaterina, V
    Rysenkova, Karina D.
    Troyanovskiy, Konstantin E.
    Shmakova, Anna A.
    Rubina, Kseniya A.
    BIOCHEMISTRY-MOSCOW, 2021, 86 (07) : 785 - 799
  • [30] Online analytical processing (OLAP): A fast and effective data mining tool for gene expression databases
    Alkharouf, NW
    Jamison, DC
    Matthews, BF
    JOURNAL OF BIOMEDICINE AND BIOTECHNOLOGY, 2005, (02): : 181 - 188