Imaging the Zigzag Wigner Crystal in Confinement-Tunable Quantum Wires

被引:23
|
作者
Ho, Sheng-Chin [1 ]
Chang, Heng-Jian [1 ]
Chang, Chia-Hua [1 ]
Lo, Shun-Tsung [1 ]
Creeth, Graham [2 ]
Kumar, Sanjeev [2 ]
Farrer, Ian [3 ,4 ]
Ritchie, David [3 ]
Griffiths, Jonathan [3 ]
Jones, Geraint [3 ]
Pepper, Michael [2 ]
Chen, Tse-Ming [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Phys, Tainan 701, Taiwan
[2] UCL, Dept Elect & Elect Engn, London WC1E 7JE, England
[3] Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
[4] Univ Sheffield, Dept Elect & Elect Engn, Mappin St, Sheffield S1 3JD, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
LUTTINGER-LIQUID; COULOMB DRAG; CONDUCTANCE; SEPARATION; DYNAMICS; SYSTEMS; FIELD; SPINS; DOTS;
D O I
10.1103/PhysRevLett.121.106801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The existence of Wigner crystallization, one of the most significant hallmarks of strong electron correlations, has to date only been definitively observed in two-dimensional systems. In one-dimensional (1D) quantum wires Wigner crystals correspond to regularly spaced electrons; however, weakening the confinement and allowing the electrons to relax in a second dimension is predicted to lead to the formation of a new ground state constituting a zigzag chain with nontrivial spin phases and properties. Here we report the observation of such zigzag Wigner crystals by use of on-chip charge and spin detectors employing electron focusing to image the charge density distribution and probe their spin properties. This experiment demonstrates both the structural and spin phase diagrams of the 1D Wigner crystallization. The existence of zigzag spin chains and phases which can be electrically controlled in semiconductor systems may open avenues for experimental studies of Wigner crystals and their technological applications in spintronics and quantum information.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Minimizing the Quantum-confinement Effects on Nonlinear Optical Properties of Quantum Wires
    Shafei, Shoresh
    Kuzyk, Mark G.
    LINEAR AND NONLINEAR OPTICS OF ORGANIC MATERIALS XI, 2011, 8113
  • [42] Separation of strain and quantum-confinement effects in the optical spectra of quantum wires
    Martinet, E
    Dupertuis, MA
    Reinhardt, F
    Biasiol, G
    Kapon, E
    Stier, O
    Grundmann, M
    Bimberg, D
    PHYSICAL REVIEW B, 2000, 61 (07): : 4488 - 4491
  • [43] Linear and nonlinear conductance of ballistic quantum wires with hybrid confinement
    Kothari, H.
    Ramamoorthy, A.
    Akis, R.
    Goodnick, S. M.
    Ferry, B. K.
    Reno, J. L.
    Bird, J. P.
    JOURNAL OF APPLIED PHYSICS, 2008, 103 (01)
  • [44] Phonon confinement and screening effects on the polaron energy in quantum wires
    Bilkent Univ, Ankara, Turkey
    Semicond Sci Technol, 6 (803-806):
  • [45] BARRIER-CONFINEMENT-CONTROLLED CARRIER TRANSPORT INTO QUANTUM WIRES
    KIESELING, F
    BRAUN, W
    WANG, KH
    FORCHEL, A
    KNIPP, PA
    REINECKE, TL
    PAGNODROSSIAUX, P
    GOLDSTEIN, L
    PHYSICAL REVIEW B, 1995, 52 (16) : 11595 - 11598
  • [46] Estimation of Exciton Confinement in III-Nitride Quantum Wires
    Islam, Md. Rakibul
    Hasan, Md. Soyaeb
    Islam, Md. Rafiqul
    2016 9TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (ICECE), 2016, : 311 - 313
  • [47] Quantum Confinement-Tunable Ultrafast Charge Transfer in a PbS Quantum Dots/WSe2 0D-2D Hybrid Structure: Transition from the Weak to Strong Coupling Regime
    Zhang, Chi
    Lian, Linyuan
    Yang, Zhaoliang
    Zhang, Jianbing
    Zhu, Haiming
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (24): : 7665 - 7671
  • [48] CARRIER CAPTURE IN INTERMIXED QUANTUM WIRES WITH SHARP LATERAL CONFINEMENT
    LEIER, H
    FORCHEL, A
    MAILE, BE
    MAYER, G
    HOMMEL, J
    WEIMANN, G
    SCHLAPP, W
    APPLIED PHYSICS LETTERS, 1990, 56 (01) : 48 - 50
  • [49] Linear and nonlinear conductance of ballistic quantum wires with hybrid confinement
    Kothari, H.
    Ramamoorthy, A.
    Akis, R.
    Goodnick, S.M.
    Ferry, D.K.
    Reno, J.L.
    Bird, J.P.
    Journal of Applied Physics, 2008, 103 (01):
  • [50] Double-row transport in quantum wires of shallow confinement
    Hew, W. K.
    Thomas, K. J.
    Pepper, M.
    Farrer, I.
    Anderson, D.
    Jones, G. A. C.
    Ritchie, D. A.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2010, 42 (04): : 1118 - 1121