Imaging the Zigzag Wigner Crystal in Confinement-Tunable Quantum Wires

被引:23
|
作者
Ho, Sheng-Chin [1 ]
Chang, Heng-Jian [1 ]
Chang, Chia-Hua [1 ]
Lo, Shun-Tsung [1 ]
Creeth, Graham [2 ]
Kumar, Sanjeev [2 ]
Farrer, Ian [3 ,4 ]
Ritchie, David [3 ]
Griffiths, Jonathan [3 ]
Jones, Geraint [3 ]
Pepper, Michael [2 ]
Chen, Tse-Ming [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Phys, Tainan 701, Taiwan
[2] UCL, Dept Elect & Elect Engn, London WC1E 7JE, England
[3] Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
[4] Univ Sheffield, Dept Elect & Elect Engn, Mappin St, Sheffield S1 3JD, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
LUTTINGER-LIQUID; COULOMB DRAG; CONDUCTANCE; SEPARATION; DYNAMICS; SYSTEMS; FIELD; SPINS; DOTS;
D O I
10.1103/PhysRevLett.121.106801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The existence of Wigner crystallization, one of the most significant hallmarks of strong electron correlations, has to date only been definitively observed in two-dimensional systems. In one-dimensional (1D) quantum wires Wigner crystals correspond to regularly spaced electrons; however, weakening the confinement and allowing the electrons to relax in a second dimension is predicted to lead to the formation of a new ground state constituting a zigzag chain with nontrivial spin phases and properties. Here we report the observation of such zigzag Wigner crystals by use of on-chip charge and spin detectors employing electron focusing to image the charge density distribution and probe their spin properties. This experiment demonstrates both the structural and spin phase diagrams of the 1D Wigner crystallization. The existence of zigzag spin chains and phases which can be electrically controlled in semiconductor systems may open avenues for experimental studies of Wigner crystals and their technological applications in spintronics and quantum information.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Preparation and quantum confinement studies of soluble gaas quantum wires
    Dong, AG
    Wang, FD
    Yu, H
    Buhro, WE
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U1055 - U1055
  • [22] Comparison between quantum confinement effects of quantum wires and dots
    Li, JB
    Wang, LW
    CHEMISTRY OF MATERIALS, 2004, 16 (21) : 4012 - 4015
  • [23] Quantum confinement of carriers in heterostructured GaAs/GaP quantum wires
    Oliveira, CLN
    Chaves, A
    Caetano, EWS
    Degani, MH
    Freire, JAK
    MICROELECTRONICS JOURNAL, 2005, 36 (11) : 1049 - 1051
  • [24] Conductance oscillations and charge waves in zigzag shaped quantum wires
    Kwapinski, T.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (29)
  • [25] Rectified coulomb drag induced by wigner crystallization in quantum wires
    Yamamoto, Michihisa
    Takagi, Hiroyuki
    Stopa, Michael
    Tarucha, Seigo
    PHYSICS OF SEMICONDUCTORS, PTS A AND B, 2007, 893 : 747 - +
  • [26] Large excitonic confinement in asymmetric quantum T wires
    Lucent Technologies, Murray Hill, United States
    Superlattices Microstruct, 3 (359-364):
  • [27] Tunneling spectroscopy of voltage tunable quantum wires
    Ploner, G
    Gornik, E
    SUPERLATTICES AND MICROSTRUCTURES, 2000, 27 (5-6) : 453 - 462
  • [28] Exciton confinement in InGaN/GaN cylindrical quantum wires
    Caetano, EWS
    Freire, VN
    Farias, GA
    da Silva, EF
    BRAZILIAN JOURNAL OF PHYSICS, 2004, 34 (2B) : 702 - 704
  • [29] QUANTUM WIRES WITH A WIDELY TUNABLE CONFINING POTENTIAL
    DREXLER, H
    HANSEN, W
    MANUS, S
    KOTTHAUS, JP
    PHYSICA SCRIPTA, 1994, 55 : 65 - 71
  • [30] Large excitonic confinement in asymmetric quantum T wires
    Hasen, J
    Pfeiffer, LN
    Pinczuk, A
    Baranger, HU
    West, EW
    Dennis, BS
    SUPERLATTICES AND MICROSTRUCTURES, 1997, 22 (03) : 359 - 364