Imaging the Zigzag Wigner Crystal in Confinement-Tunable Quantum Wires

被引:23
|
作者
Ho, Sheng-Chin [1 ]
Chang, Heng-Jian [1 ]
Chang, Chia-Hua [1 ]
Lo, Shun-Tsung [1 ]
Creeth, Graham [2 ]
Kumar, Sanjeev [2 ]
Farrer, Ian [3 ,4 ]
Ritchie, David [3 ]
Griffiths, Jonathan [3 ]
Jones, Geraint [3 ]
Pepper, Michael [2 ]
Chen, Tse-Ming [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Phys, Tainan 701, Taiwan
[2] UCL, Dept Elect & Elect Engn, London WC1E 7JE, England
[3] Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
[4] Univ Sheffield, Dept Elect & Elect Engn, Mappin St, Sheffield S1 3JD, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
LUTTINGER-LIQUID; COULOMB DRAG; CONDUCTANCE; SEPARATION; DYNAMICS; SYSTEMS; FIELD; SPINS; DOTS;
D O I
10.1103/PhysRevLett.121.106801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The existence of Wigner crystallization, one of the most significant hallmarks of strong electron correlations, has to date only been definitively observed in two-dimensional systems. In one-dimensional (1D) quantum wires Wigner crystals correspond to regularly spaced electrons; however, weakening the confinement and allowing the electrons to relax in a second dimension is predicted to lead to the formation of a new ground state constituting a zigzag chain with nontrivial spin phases and properties. Here we report the observation of such zigzag Wigner crystals by use of on-chip charge and spin detectors employing electron focusing to image the charge density distribution and probe their spin properties. This experiment demonstrates both the structural and spin phase diagrams of the 1D Wigner crystallization. The existence of zigzag spin chains and phases which can be electrically controlled in semiconductor systems may open avenues for experimental studies of Wigner crystals and their technological applications in spintronics and quantum information.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Quantum confinement-tunable solar cell based on ultrathin amorphous germanium
    Meddeb, Hosni
    Osterthun, Norbert
    Goetz, Maximilian
    Sergeev, Oleg
    Gehrke, Kai
    Vehse, Martin
    Agert, Carsten
    NANO ENERGY, 2020, 76
  • [2] Wigner crystal physics in quantum wires
    Meyer, Julia S.
    Matveev, K. A.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (02)
  • [3] Optical Switching of Quantum Confinement-Tunable Semi-Transparent Solar Cell Based on Ultrathin Germanium
    Goetz-Koehler, Maximilian
    Meddeb, Hosni
    Gehrke, Kai
    Vehse, Martin
    Agert, Carsten
    2021 IEEE 48TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2021, : 774 - 777
  • [4] Spin exchange in quantum rings and wires in the Wigner-crystal limit
    Fogler, MM
    Pivovarov, E
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (01) : L7 - L13
  • [5] Exchange coupling in quantum rings and wires in the Wigner-crystal limit
    Fogler, MM
    Pivovarov, E
    JOURNAL DE PHYSIQUE IV, 2005, 131 : 217 - 220
  • [6] Exchange interaction in quantum rings and wires in the Wigner-crystal limit
    Fogler, MM
    Pivovarov, E
    PHYSICAL REVIEW B, 2005, 72 (19):
  • [7] Quantum confinement-tunable intersystem crossing and the triplet state lifetime of cationic porphyrin-CdTe quantum dot nano-assemblies
    Ahmed, Ghada H.
    Aly, Shawkat M.
    Usman, Anwar
    Eita, Mohamed S.
    Melnikov, Vasily A.
    Mohammed, Omar F.
    CHEMICAL COMMUNICATIONS, 2015, 51 (38) : 8010 - 8013
  • [8] Zigzag Phase Transition in Quantum Wires
    Mehta, Abhijit C.
    Umrigar, C. J.
    Meyer, Julia S.
    Baranger, Harold U.
    PHYSICAL REVIEW LETTERS, 2013, 110 (24)
  • [9] Ultrafast Wigner transport in quantum wires
    Mihail Nedjalkov
    Dragica Vasileska
    Emanouil Atanassov
    Vassil Palankovski
    Journal of Computational Electronics, 2007, 6 : 235 - 238
  • [10] Wigner crystallization in semiconductor quantum wires
    Tanatar, B
    Al-Hayek, I
    Tomak, M
    PHYSICAL REVIEW B, 1998, 58 (15): : 9886 - 9889