Top-gate field-effect transistor based on monolayer WS2 with an ion-gel gate dielectric

被引:2
|
作者
Jung, Dae Hyun [1 ,2 ]
Oh, Guen Hyung [1 ,2 ]
Kim, Sang-il [3 ]
Kim, TaeWan [1 ,2 ]
机构
[1] Jeonbuk Natl Univ, Dept Elect Engn, Jeonju 54896, South Korea
[2] Jeonbuk Natl Univ, Smart Grid Res Ctr, Jeonju 54896, South Korea
[3] Univ Seoul, Dept Mat Sci & Engn, 163 Seoulsiripdae Ro, Seoul 02504, South Korea
基金
新加坡国家研究基金会;
关键词
transition-metal dichalcogenides; field-effect transistor; ion gel; tungsten disulfide; Schottky barrier heights; Contact resistance; PERFORMANCE; MONO; CONTACT; LIQUID; LAYERS;
D O I
10.35848/1347-4065/ac4b6c
中图分类号
O59 [应用物理学];
学科分类号
摘要
A top-gate field-effect transistor (FET), based on monolayer (ML) tungsten disulfide (WS2), and with an ion-gel dielectric was developed. The high electrical contact resistance of the Schottky contacts at the n-type transition metal dichalcogenides/metal electrode interfaces often adversely affects the device performance. We report the contact resistance and Schottky barrier height of an FET with Au electrodes. The FET is based on ML WS2 that was synthesized using chemical vapour deposition and was assessed using the transfer-length method and low-temperature measurements. Raman and photoluminescence spectra were recorded to determine the optical properties of the WS2 layers. The ML WS2 FET with an ion-gel top gate dielectric exhibits n-type behaviour, with a mobility, on/off ratio of 1.97 cm(2) V-1 center dot s(-1), 1.51 x 10(5), respectively.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Graphene Nanoribbon Field-Effect Transistors with Top-Gate Polymer Dielectrics
    Jeong, Beomjin
    Wuttke, Michael
    Zhou, Yazhou
    Muellen, Klaus
    Narita, Akimitsu
    Asadi, Kamal
    ACS APPLIED ELECTRONIC MATERIALS, 2022, 4 (06) : 2667 - 2671
  • [22] Gate dependent phonon shift in tungsten disulfide (WS2) field effect transistor
    Iqbal, Muhammad Waqas
    Shahzad, Kinza
    Hussain, Ghulam
    Arshad, Muhammad Kamran
    Akbar, Rehan
    Azam, Sikander
    Aftab, Sikandar
    Alharbi, Thamer
    Majid, Abdul
    MATERIALS RESEARCH EXPRESS, 2019, 6 (11)
  • [23] Top-gate engineering of field-effect transistors based on single layers of MoS2 and graphene
    Irfan, Muhammad
    Mustafa, Hina
    Sattar, Abdul
    Ahsan, Umar
    Alvi, Farah
    Usman, Arslan
    Siddique, Irfan
    Pang, Wenhui
    Qin, Shengyong
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2024, 184
  • [24] Fabrication of an organic field-effect transistor on a mica gate dielectric
    Matsumoto, Akira
    Onoki, Ryo
    Ueno, Keiji
    Ikeda, Susumu
    Saiki, Koichiro
    CHEMISTRY LETTERS, 2006, 35 (04) : 354 - 355
  • [25] Solvent-Free Processable and Photo-Patternable Hybrid Gate Dielectric for Flexible Top-Gate Organic Field-Effect Transistors
    Kwon, Jun Seon
    Park, Han Wool
    Kim, Do Hwan
    Kwark, Young-Je
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (06) : 5366 - 5374
  • [26] Parylene-based polymeric dielectric top-gate organic field-effect transistors exposed to a UV/ozone environment
    Ye, Heqing
    Kwon, Hyeok-jin
    Tang, Xiaowu
    Park, Chan Eon
    An, Tae Kyu
    Kim, Se Hyun
    ORGANIC ELECTRONICS, 2020, 87
  • [27] Effect of nanocomposite gate dielectric roughness on pentacene field-effect transistor
    Lee, Wen-Hsi
    Wang, C. C.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2009, 27 (03): : 1116 - 1121
  • [28] Analysis of the contact resistance in staggered, top-gate organic field-effect transistors
    Richards, T.J.
    Sirringhaus, H.
    Journal of Applied Physics, 2007, 102 (09):
  • [29] Extraction of the Interface State Density of Top-Gate Graphene Field-Effect Transistors
    Jung, Ukjin
    Kim, Yun Ji
    Kim, Yonghun
    Lee, Young Gon
    Lee, Byoung Hun
    IEEE ELECTRON DEVICE LETTERS, 2015, 36 (04) : 408 - 410
  • [30] Electrical Properties of Top-Gate β-Ga2O3 Nanomembrane Metal-Semiconductor Field-Effect Transistor
    Ma, Jiyeon
    Yoo, Geonwook
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2020, 20 (01) : 516 - 519