SMIM Framework to Generalize High-Utility Itemset Mining

被引:0
|
作者
Dawar, Siddharth [1 ]
Goyal, Vikram [1 ]
Bera, Debajyoti [1 ]
机构
[1] Indraprastha Inst Informat Technol IIIT Delhi, New Delhi, India
关键词
D O I
10.1007/978-3-030-95408-6_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In high-utility itemset mining (HUIM), the utility of a set of items is calculated as the sum of the utilities of the individual items. In this paper, we describe scenarios where utility may be less than this sum for multi-item itemsets. To overcome the limitation of the current itemset mining algorithms for such scenarios, we introduce the SMIM framework for itemset mining in which utilities are constrained to be non-negative subadditive and monotone functions over itemsets. SMIM generalizes HUIM, can be used to analyse transaction databases with multi-item discount schemes, and can further be used to mine interesting patterns in a social network dataset. Finally, we explain how to design algorithms for SMIM with any general subadditive monotone utility function.
引用
收藏
页码:3 / 15
页数:13
相关论文
共 50 条
  • [41] Cross-Level High-Utility Itemset Mining Using Multi-core Processing
    Tung, N. T.
    Nguyen, Loan T. T.
    Nguyen, Trinh D. D.
    Kozierkiewicz, Adrianna
    COMPUTATIONAL COLLECTIVE INTELLIGENCE (ICCCI 2021), 2021, 12876 : 467 - 479
  • [42] Performance comparison of inertia weight and acceleration coefficients of BPSO in the context of high-utility itemset mining
    Gunawan, Ridowati
    Winarko, Edi
    Pulungan, Reza
    EVOLUTIONARY INTELLIGENCE, 2023, 16 (03) : 943 - 961
  • [43] Mining of high-utility itemsets with negative utility
    Singh, Kuldeep
    Shakya, Harish Kumar
    Singh, Abhimanyu
    Biswas, Bhaskar
    EXPERT SYSTEMS, 2018, 35 (06)
  • [44] High-utility pattern mining: A method for discovery of high-utility item sets
    Hu, Jianying
    Mojsilovic, Aleksandra
    PATTERN RECOGNITION, 2007, 40 (11) : 3317 - 3324
  • [45] Fuzzy high-utility pattern mining in parallel and distributed Hadoop framework
    Wu, Jimmy Ming-Tai
    Srivastava, Gautam
    Wei, Min
    Yun, Unil
    Lin, Jerry Chun-Wei
    INFORMATION SCIENCES, 2021, 553 : 31 - 48
  • [46] A hybrid framework for mining high-utility itemsets in a sparse transaction database
    Siddharth Dawar
    Vikram Goyal
    Debajyoti Bera
    Applied Intelligence, 2017, 47 : 809 - 827
  • [47] A hybrid framework for mining high-utility itemsets in a sparse transaction database
    Dawar, Siddharth
    Goyal, Vikram
    Bera, Debajyoti
    APPLIED INTELLIGENCE, 2017, 47 (03) : 809 - 827
  • [48] FHM plus : Faster High-Utility Itemset Mining Using Length Upper-Bound Reduction
    Fournier-Viger, Philippe
    Lin, Jerry Chun-Wei
    Duong, Quang-Huy
    Dam, Thu-Lan
    TRENDS IN APPLIED KNOWLEDGE-BASED SYSTEMS AND DATA SCIENCE, 2016, 9799 : 115 - 127
  • [49] Mining Minimal High-Utility Itemsets
    Fournier-Viger, Philippe
    Lin, Jerry Chun-Wei
    Wu, Cheng-Wei
    Tseng, Vincent S.
    Faghihi, Usef
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2016, PT I, 2016, 9827 : 88 - 101
  • [50] Parallel High Utility Itemset Mining
    Fan, Gaojuan
    Xiao, Huaiyuan
    Zhang, Chongsheng
    Almpanidis, George
    Fournier-Viger, Philippe
    Fujita, Hamido
    ADVANCES AND TRENDS IN ARTIFICIAL INTELLIGENCE: THEORY AND PRACTICES IN ARTIFICIAL INTELLIGENCE, 2022, 13343 : 819 - 830