SMIM Framework to Generalize High-Utility Itemset Mining

被引:0
|
作者
Dawar, Siddharth [1 ]
Goyal, Vikram [1 ]
Bera, Debajyoti [1 ]
机构
[1] Indraprastha Inst Informat Technol IIIT Delhi, New Delhi, India
关键词
D O I
10.1007/978-3-030-95408-6_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In high-utility itemset mining (HUIM), the utility of a set of items is calculated as the sum of the utilities of the individual items. In this paper, we describe scenarios where utility may be less than this sum for multi-item itemsets. To overcome the limitation of the current itemset mining algorithms for such scenarios, we introduce the SMIM framework for itemset mining in which utilities are constrained to be non-negative subadditive and monotone functions over itemsets. SMIM generalizes HUIM, can be used to analyse transaction databases with multi-item discount schemes, and can further be used to mine interesting patterns in a social network dataset. Finally, we explain how to design algorithms for SMIM with any general subadditive monotone utility function.
引用
收藏
页码:3 / 15
页数:13
相关论文
共 50 条
  • [21] Efficient evolutionary computation model of closed high-utility itemset mining
    Lin, Jerry Chun-Wei
    Djenouri, Youcef
    Srivastava, Gautam
    Fourier-Viger, Philippe
    APPLIED INTELLIGENCE, 2022, 52 (09) : 10604 - 10616
  • [22] HUITWU: An Efficient Algorithm for High-Utility Itemset Mining in Transaction Databases
    Guo, Shi-Ming
    Gao, Hong
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2016, 31 (04) : 776 - 786
  • [23] Investigating Crossover Operators in Genetic Algorithms for High-Utility Itemset Mining
    Nawaz, M. Saqib
    Fournier-Viger, Philippe
    Song, Wei
    Lin, Jerry Chun-Wei
    Noack, Bernd
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2021, 2021, 12672 : 16 - 28
  • [24] EFIM: a fast and memory efficient algorithm for high-utility itemset mining
    Zida, Souleymane
    Fournier-Viger, Philippe
    Lin, Jerry Chun-Wei
    Wu, Cheng-Wei
    Tseng, Vincent S.
    KNOWLEDGE AND INFORMATION SYSTEMS, 2017, 51 (02) : 595 - 625
  • [25] EFIM: a fast and memory efficient algorithm for high-utility itemset mining
    Souleymane Zida
    Philippe Fournier-Viger
    Jerry Chun-Wei Lin
    Cheng-Wei Wu
    Vincent S. Tseng
    Knowledge and Information Systems, 2017, 51 : 595 - 625
  • [26] Efficient evolutionary computation model of closed high-utility itemset mining
    Jerry Chun-Wei Lin
    Youcef Djenouri
    Gautam Srivastava
    Philippe Fourier-Viger
    Applied Intelligence, 2022, 52 : 10604 - 10616
  • [27] Efficient High-Utility Itemset Mining Over Variety of Databases: A Survey
    Suvarna, U.
    Srinivas, Y.
    SOFT COMPUTING IN DATA ANALYTICS, SCDA 2018, 2019, 758 : 803 - 816
  • [28] Efficient high-utility occupancy itemset mining algorithm on massive data
    He, Jingxuan
    Han, Xixian
    Wang, Jinbao
    Zhang, Kaiqi
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 210
  • [29] Efficient High-utility Itemset Mining Based on a Novel Data Structure
    Shen, Wei
    Zhang, Chao
    Fang, Wei
    Zhang, Xin
    Than, Zhi-Hui
    Lin, Jerry Chun-Wei
    2021 IEEE INTERNATIONAL SMART CITIES CONFERENCE (ISC2), 2021,
  • [30] Targeted High-Utility Itemset Querying
    Miao J.
    Wan S.
    Gan W.
    Sun J.
    Chen J.
    IEEE Transactions on Artificial Intelligence, 2023, 4 (04): : 871 - 883