On the asymptotic normality of estimating the affine preferential attachment network models with random initial degrees

被引:11
|
作者
Gao, Fengnan [1 ,2 ]
van der Vaart, Aad [3 ]
机构
[1] Fudan Univ, Sch Data Sci, Handan Rd 220, Shanghai 200433, Peoples R China
[2] Shanghai Ctr Math Sci, Handan Rd 220, Shanghai 200433, Peoples R China
[3] Leiden Univ, Math Inst, POB 9512, NL-2300 RA Leiden, Netherlands
基金
欧洲研究理事会;
关键词
Preferential attachment model; Complex networks; Statistical inference; Asymptotic normality;
D O I
10.1016/j.spa.2017.03.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the estimation of the affine parameter and power-law exponent in the preferential attachment model with random initial degrees. We derive the likelihood, and show that the maximum likelihood estimator (MLE) is asymptotically normal and efficient. We also propose a quasi-maximum likelihood estimator (QMLE) to overcome the MLE's dependence on the history of the initial degrees. To demonstrate the power of our idea, we present numerical simulations. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:3754 / 3775
页数:22
相关论文
共 31 条
  • [21] Estimating the minimum control count of random network models
    Ruths, Derek
    Ruths, Justin
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [22] Estimating the minimum control count of random network models
    Derek Ruths
    Justin Ruths
    [J]. Scientific Reports, 6
  • [23] Transcriptional network growing models using motif-based preferential attachment
    Abdelzaher, Ahmed F.
    Al-Musawi, Ahmad F.
    Ghosh, Preetam
    Mayo, Michael L.
    Perkins, Edward J.
    [J]. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2015, 3
  • [24] CHANGE POINT DETECTION IN NETWORK MODELS: PREFERENTIAL ATTACHMENT AND LONG RANGE DEPENDENCE
    Bhamidi, Shankar
    Jin, Jimmy
    Nobel, Andrew
    [J]. ANNALS OF APPLIED PROBABILITY, 2018, 28 (01): : 35 - 78
  • [25] Consistency and asymptotic normality of the maximum quasi-likelihood estimator in quasi-likelihood nonlinear models with random regressors
    Xia, Tian
    Wang, Shun-fang
    Wang, Xue-ren
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2010, 26 (02): : 241 - 250
  • [27] Consistency and asymptotic normality of the maximum quasi-likelihood estimator in quasi-likelihood nonlinear models with random regressors
    Tian Xia
    Shun-fang Wang
    Xue-ren Wang
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2010, 26 : 241 - 250
  • [28] Estimating Exponential Random Graph Models using Sampled Network Data via Graphon
    He, Ran
    Zheng, Tian
    [J]. PROCEEDINGS OF THE 2016 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING ASONAM 2016, 2016, : 112 - 119
  • [29] A deep learning approach to estimating initial conditions of Brain Network Models in reference to measured fMRI data
    Kashyap, Amrit
    Plis, Sergey
    Ritter, Petra
    Keilholz, Shella
    [J]. FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [30] Estimating Flexural Strength of FRP Reinforced Beam Using Artificial Neural Network and Random Forest Prediction Models
    Khan, Kaffayatullah
    Iqbal, Mudassir
    Salami, Babatunde Abiodun
    Amin, Muhammad Nasir
    Ahamd, Izaz
    Alabdullah, Anas Abdulalim
    Abu Arab, Abdullah Mohammad
    Jalal, Fazal E.
    [J]. POLYMERS, 2022, 14 (11)