Consistency and asymptotic normality of the maximum quasi-likelihood estimator in quasi-likelihood nonlinear models with random regressors

被引:5
|
作者
Xia, Tian [1 ]
Wang, Shun-fang [2 ]
Wang, Xue-ren [1 ]
机构
[1] Yunnan Univ, Dept Biostat, Kunming 650091, Peoples R China
[2] Yunnan Univ, Sch Informat Sci & Engn, Kunming 650091, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Asymptotic normality; consistency; maximum quasi-likelihood estimator; quasi-likelihood nonlinear models with random regressors; GENERALIZED LINEAR-MODELS;
D O I
10.1007/s10255-009-7168-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes some regularity conditions, which result in the existence, strong consistency and asymptotic normality of maximum quasi-likelihood estimator (MQLE) in quasi-likelihood nonlinear models (QLNM) with random regressors. The asymptotic results of generalized linear models (GLM) with random regressors are generalized to QLNM with random regressors.
引用
收藏
页码:241 / 250
页数:10
相关论文
共 50 条