Into the Black Box: What Can Machine Learning Offer Environmental Health Research?

被引:18
|
作者
Schmidt, Charles W.
机构
关键词
D O I
10.1289/EHP5878
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
[No abstract available]
引用
收藏
页数:5
相关论文
共 50 条
  • [31] What makes a good prediction? Feature importance and beginning to open the black box of machine learning in genetics
    Musolf, Anthony M.
    Holzinger, Emily R.
    Malley, James D.
    Bailey-Wilson, Joan E.
    HUMAN GENETICS, 2022, 141 (09) : 1515 - 1528
  • [32] What makes a good prediction? Feature importance and beginning to open the black box of machine learning in genetics
    Anthony M. Musolf
    Emily R. Holzinger
    James D. Malley
    Joan E. Bailey-Wilson
    Human Genetics, 2022, 141 : 1515 - 1528
  • [33] Location, location, location: what can geographic information science (GIS) offer sexual health research?
    Simms, I.
    Gibin, M.
    Petersen, J.
    SEXUALLY TRANSMITTED INFECTIONS, 2014, 90 (06) : 442 - 443
  • [34] What Contributions, if Any, Can Non-Indigenous Researchers Offer Toward Decolonizing Health Research?
    Krusz, Emily
    Davey, Tamzyn
    Wigginton, Britta
    Hall, Nina
    QUALITATIVE HEALTH RESEARCH, 2020, 30 (02) : 205 - 216
  • [35] Proprietary Information Considerations in Health, Activity, and Dietary Research Implications of Knowing What Is in the "Black Box"
    Jakicic, John M.
    AMERICAN JOURNAL OF PREVENTIVE MEDICINE, 2011, 40 (05) : 583 - 584
  • [36] Cracking Open the Black Box: What Observations Can Tell Us About Reinforcement Learning Agents
    Dethise, Arnaud
    Canini, Marco
    Kandula, Srikanth
    NETAI'19: PROCEEDINGS OF THE 2019 ACM SIGCOMM WORKSHOP ON NETWORK MEETS AI & ML, 2019, : 29 - 36
  • [37] Opening the Black Box of the Radiation Belt Machine Learning Model
    Ma, Donglai
    Bortnik, Jacob
    Chu, Xiangning
    Claudepierre, Seth G. G.
    Ma, Qianli
    Kellerman, Adam
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2023, 21 (04):
  • [38] Opening the black box: interpretability of machine learning algorithms in electrocardiography
    Bodini, Matteo
    Rivolta, Massimo W.
    Sassi, Roberto
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2212):
  • [39] Integrating White and Black Box Techniques for Interpretable Machine Learning
    Vernon, Eric M.
    Masuyama, Naoki
    Nojima, Yusuke
    PROCEEDINGS OF NINTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, ICICT 2024, VOL 4, 2024, 1014 : 639 - 649
  • [40] Explainable Debugger for Black-box Machine Learning Models
    Rasouli, Peyman
    Yu, Ingrid Chieh
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,